Paravertebral block, especially thoracic paravertebral block, is an effective regional anesthetic technique that can provide significant analgesia for numerous surgical procedures, including breast surgery, pulmonary surgery, and herniorrhaphy. The technique, although straightforward, is not devoid of potential adverse effects. Proper anatomic knowledge and adequate technique may help decrease the risk of these effects. In this brief discourse, we discuss the anatomy and technical aspects of paravertebral blocks and emphasize the importance of appropriate needle manipulation in order to minimize the risk of complications. We propose that, when using a landmark-based approach, limiting medial and lateral needle orientation and implementing caudal (rather than cephalad) needle redirection may provide an extra margin of safety when performing this technique. Likewise, recognizing a target that is not in close proximity to the neurovascular bundle when using ultrasound guidance may be beneficial.
Methylene blue, when used in patients on antidepressant drugs, may be associated with a transient encephalopathic state and serotonin syndrome. Patients on antidepressants undergoing parathyroidectomy who may receive MB infusion should be considered for alternative parathyroid gland identification or discontinuation of the antidepressants before surgery. MB-associated serotonin syndrome is an increasing and under recognized ('green') post-operative encephalopathy that warrants education to critical care neurologists and other physicians.
The jaw thrust maneuver was superior to videolaryngoscopy alone in improving the modified C&L grade and the visualized glottic area; however, no significant improvement was noted with cricoid pressure. We therefore recommend the use of jaw thrust as a first-line maneuver to aid in glottic visualization and tracheal intubation during GlideScope videolaryngoscopy.
Two-dimensional (2D) ultrasound is commonly used for regional block of the axillary brachial plexus. In this technical case report, we described a real-time three-dimensional (3D) ultrasound-guided axillary block. The difference between 2D and 3D ultrasound is similar to the difference between plain radiograph and computer tomography. Unlike 2D ultrasound that captures a planar image, 3D ultrasound technology acquires a 3D volume of information that enables multiple planes of view by manipulating the image without movement of the ultrasound probe. Observation of the brachial plexus in cross-section demonstrated distinct linear hyperechoic tissue structures (loose connective tissue) that initially inhibited the flow of the local anesthesia. After completion of the injection, we were able to visualize the influence of arterial pulsation on the spread of the local anesthesia. Possible advantages of this novel technology over current 2D methods are wider image volume and the capability to manipulate the planes of the image without moving the probe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.