In this paper, we tackle the problem of understanding the temporal structure of complex events in highly varying videos obtained from the Internet. Towards this goal, we utilize a conditional model trained in a max-margin framework that is able to automatically discover discriminative and interesting segments of video, while simultaneously achieving competitive accuracies on difficult detection and recognition tasks. We introduce latent variables over the frames of a video, and allow our algorithm to discover and assign sequences of states that are most discriminative for the event. Our model is based on the variable-duration hidden Markov model, and models durations of states in addition to the transitions between states. The simplicity of our model allows us to perform fast, exact inference using dynamic programming, which is extremely important when we set our sights on being able to process a very large number of videos quickly and efficiently. We show promising results on the Olympic Sports dataset [16] and the 2011 TRECVID Multimedia Event Detection task [18]. We also illustrate and visualize the semantic understanding capabilities of our model.
Abstract. In this paper, we tackle the problem of performing efficient co-localization in images and videos. Co-localization is the problem of simultaneously localizing (with bounding boxes) objects of the same class across a set of distinct images or videos. Building upon recent stateof-the-art methods, we show how we are able to naturally incorporate temporal terms and constraints for video co-localization into a quadratic programming framework. Furthermore, by leveraging the Frank-Wolfe algorithm (or conditional gradient), we show how our optimization formulations for both images and videos can be reduced to solving a succession of simple integer programs, leading to increased efficiency in both memory and speed. To validate our method, we present experimental results on the PASCAL VOC 2007 dataset for images and the YouTube-Objects dataset for videos, as well as a joint combination of the two.
In this paper, we tackle the problem of co-localization in real-world images. Co-localization is the problem of simultaneously localizing (with bounding boxes) objects of the same class across a set of distinct images. Although similar problems such as co-segmentation and weakly supervised localization have been previously studied, we focus on being able to perform co-localization in real-world settings, which are typically characterized by large amounts of intraclass variation, inter-class diversity, and annotation noise. To address these issues, we present a joint image-box formulation for solving the co-localization problem, and show how it can be relaxed to a convex quadratic program which can be efficiently solved. We perform an extensive evaluation of our method compared to previous state-of-theart approaches on the challenging PASCAL VOC 2007 and Object Discovery datasets. In addition, we also present a large-scale study of co-localization on ImageNet, involving ground-truth annotations for 3,624 classes and approximately 1 million images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.