Weather forecasting is dominated by numerical weather prediction that tries to model accurately the physical properties of the atmosphere. A downside of numerical weather prediction is that it is lacking the ability for short-term forecasts using the latest available information. By using a data-driven neural network approach we show that it is possible to produce an accurate precipitation nowcast. To this end, we propose SmaAt-UNet, an efficient convolutional neural networks based on the well known UNet architecture equipped with attention modules and depthwise-separable convolutions. We evaluate our approach on a real-life dataset using precipitation maps from the region of the Netherlands. The experimental results show that in terms of accuracy the proposed model is comparable to other examined models while only using a quarter of the trainable parameters.
We developed the CPR Tutor, a real-time multimodal feedback system for cardiopulmonary resuscitation (CPR) training. The CPR Tutor detects mistakes using recurrent neural networks for real-time time-series classification. From a multimodal data stream consisting of kinematic and electromyographic data, the CPR Tutor system automatically detects the chest compressions, which are then classified and assessed according to five performance indicators. Based on this assessment, the CPR Tutor provides audio feedback to correct the most critical mistakes and improve the CPR performance. To test the validity of the CPR Tutor, we first collected the data corpus from 10 experts used for model training. Hence, to test the impact of the feedback functionality, we ran a user study involving 10 participants. The CPR Tutor pushes forward the current state of the art of real-time multimodal tutors by providing: 1) an architecture design, 2) a methodological approach to design multimodal feedback and 3) a field study on real-time feedback for CPR training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.