We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observed high-precision oscillation frequencies of lowdegree coherent gravity modes with long lifetimes and their observational uncertainties. Identification of the mode degree and azimuthal order is assumed to be achieved from rotational splitting and/or from period spacing patterns. This paper has two major outcomes. The first is a comprehensive list and discussion of the major uncertainties of theoretically predicted gravity-mode oscillation frequencies based on linear pulsation theory, caused by fixing choices of the input physics for evolutionary models. Guided by a hierarchy among these uncertainties of theoretical frequencies, we subsequently provide a global methodological scheme to achieve forward asteroseismic modeling. We properly take into account correlations amongst the free parameters included in stellar models. Aside from the stellar mass, metalicity and age, the major parameters to be estimated are the near-core rotation rate, the amount of convective core overshooting, and the level of chemical mixing in the radiative zones. This modeling scheme allows for maximum likelihood estimation of the stellar parameters for fixed input physics of the equilibrium models, followed by stellar model selection considering various choices of the input physics. Our approach uses the Mahalanobis distance instead of the often used χ 2 statistic and includes heteroscedasticity. It provides estimation of the unknown variance of the theoretically predicted oscillation frequencies.
Ultrasonic thermography is a promising technique for non-destructive evaluation of vibrating defects, due to its ability to perform fast, full field material inspections. A major drawback, however, is the inefficient conversion of vibrational energy to heat. To overcome this problem a solution based on Local Defect Resonance (LDR) excitation has been proposed. To validate this new concept and to find an optimal set of operational parameters it is crucial to have realistic models that can describe the ultrasonic wave-defect interaction. An important aspect therein is the modelling of frictional heat generation at the defect interface, which will be considered here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.