The ɸC31 integrase system is widely used in Drosophila melanogaster to allow transgene targeting to specific loci. Over the years, flies bearing any of more than 100 attP docking sites have been constructed. One popular docking site, termed attP40, is located close to the Nesprin-1 orthologue msp-300 and lies upstream of certain msp-300 isoforms and within the first intron of others. Here we show that attP40 causes larval muscle nuclear clustering, which is a phenotype also conferred by msp-300 mutations. We also show that flies bearing insertions within attP40 can exhibit decreased msp-300 transcript levels in third instar larvae. Finally, chromosomes carrying certain “transgenic RNAi project” (TRiP) insertions into attP40 can confer pupal or adult inviability or infertility, or dominant nuclear clustering effects in certain genetic backgrounds. These phenotypes do not require transcription from the insertions within attP40. These results demonstrate that attP40 and insertion derivatives act as msp-300 insertional mutations. These findings should be considered when interpreting data from attP40-bearing flies.
The ɸC31 integrase system is widely used in Drosophila to allow transgene targeting to specific loci. Over the years, flies bearing any of more than 100 attP docking sites have been constructed. One popular docking site, termed attP40, is located close to the Nesprin-1 orthologue MSP300 and lies upstream of certain MSP300 isoforms and within the first intron of others. Here we show that attP40 causes larval muscle nuclear clustering, which is a phenotype also conferred by MSP300 mutations. We also show that flies bearing insertions within attP40 can exhibit decreased MSP300 transcript levels in third instar larvae and, depending on the identity of the insertion, can exhibit inviability. These phenotypes do not require transcription from the insertions within attP40. These results demonstrate that attP40 and insertion derivatives act as MSP300 insertional mutations. These findings should be considered when interpretating data from attP40-bearing flies.
The mRNA export pathway is responsible for the transport of mRNAs from the nucleus to the cytoplasm, and thus is essential for protein production and normal cellular functions. A partial loss of function allele of the mRNA export factor Nxt1 in Drosophila shows reduced viability and sterility. A previous study has shown that the male fertility defect is due to a defect in transcription and RNA stability, indicating the potential for this pathway to be implicated in processes beyond the known mRNA transport function. Here we investigate the reduced viability of Nxt1 partial loss of function mutants, and describe a defect in growth and maintenance of the larval muscles, leading to muscle degeneration. RNA-seq revealed reduced expression of a set of mRNAs, particularly from genes with long introns in Nxt1 mutant carcass. We detected differential expression of circRNA, and significantly fewer distinct circRNAs expressed in the mutants. Despite the widespread defects in gene expression, muscle degeneration was rescued by increased expression of the costamere component tn (abba) in muscles. This is the first report of a role for the RNA export pathway gene Nxt1 in the maintenance of muscle integrity. Our data also links the mRNA export pathway to a specific role in the expression of mRNA and circRNA from common precursor genes, in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.