BACKGROUND INFORMATIONAt the Mechanical Engineering Department, Faculty of Engineering Christ University, Bangalore, one of the major research focuses is on diesel engine. Based on the submission of a research proposal [1] and under the Major Research Project (MRP) scheme, an in-house funded project has been sanctioned [2] during November 2013 by the Centre of Research Projects, Christ University for a period of three years. The aim and objective in three phases is a) to create a state-of-the-art facility catering to various class of diesel engines in the range of five to
Electric vehicles or portable electronic devices have come to rely heavily upon electrochemical devices, such as rechargeable batteries with optimum charge discharge characteristics, current ratings, charge-discharge rate (rate capability), cyclability etc. to perform under the expected service conditions. One of the goals of a rechargeable battery materials researcher is to fabricate materials to realize solid-state batteries with high reliability and lithium–air batteries with ultimate capacities. Most of the materials although possess high theoretical energy density values: invariably suffer from inferior cyclic performance. The performance of these batteries is guided by the electrodes within these devices which in turn depend upon the materials used to fabricate them. Chemical composition and its uniformity, consistency in microstructural features, and adequate choice of various layers that may be in the form of coatings to be overlaid on the base materials mostly comprised of ceramic oxides such as oxides of Li doped with niobates, manganates, vanadate etc. with carbon or graphene coated over layers to provide with the suitable interfacial conductivity as electrode materials in Li-ion batteries. The interfacial layers and the mechanism of interfacial phenomena encompassing the grains play a significant role in determining the performance. Optimum microstructure is obtained by choosing the right processing equipment and spray drying the composition in slurry form provides the most optimum solution. Further, spray drying offers high potential for a transfer from a lab scale technology to industrial level extrapolation. In this paper, nano graphene has been spray dried along with nano alumina grains in water media and polyvinyl alcohol binder to ascertain the free flowability, consistency in formation of graphene over layer on alumina grains as well as uniformity in graphene on alumina composition. The free flowing spray dried graphene coated alumina powders were analysed via SEM, EDS and XRD and results are presented. Additional information based on a review conducted on published information on most popular compositions in terms of electrode materials such as in Li-ion, sodium-ion etc have also been included. In the review section the rapidly increasing literature on spray drying of solutions and suspensions are also included.
Thermal Barrier Coatings (TBCs), routinely prepared from Ceramic based compositions (typically 8%Y 2 O 3-ZrO 2 or 8YSZ) are being engineered to protect the metallic components from degradation in applications like gas turbines, jet and automotive engines. With a goal of finding improved TBC materials a wide variety of ceramics are being researched worldwide. Before physically preparing the TBCs of uncommon compositions in the laboratory, their suitability to perform can be predicted. Limited accessibility to detailed and realistic information on the influence of newer compositions (other than 8YSZ) on TBCs warrants methods to obtain this information. In this paper, 8YSZ TBCs coated onto aluminium substratesare studied for thermal fatigue, thermal barrier and materials characteristics to determine the reliability of the coating configuration to withstand the harshness of test conditions under the framework of experiments. Thereafter, the results have been used to corroboratethe developed simulation model. Results obtained via thermal tests confirm the suitability of the model and we can predict the thermal barrier effects of TBCs when prepared from materials other than YSZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.