The extreme density of DNA presents a compelling advantage over current storage media; however, in order to reach practical capacities, new approaches for organizing and accessing information are needed. Here we use chemical handles to selectively extract unique files from a complex database of DNA mimicking 5 TB of data and design and implement a nested file address system that increases the theoretical maximum capacity of DNA storage systems by five orders of magnitude. These advancements enable the development and future scaling of DNA-based data storage systems with reasonable modern capacities and file access capabilities..
The physical architectures of information storage systems often dictate how information is encoded, databases are organized, and files are accessed. Here we show that a simple architecture comprised of a T7 promoter and a single-stranded overhang domain (ss-dsDNA), can unlock dynamic DNA-based information storage with powerful capabilities and advantages. The overhang provides a physical address for accessing specific DNA strands as well as implementing a range of in-storage file operations. It increases theoretical storage densities and capacities by expanding the encodable sequence space and simplifies the computational burden in designing sets of orthogonal file addresses. Meanwhile, the T7 promoter enables repeatable information access by transcribing information from DNA without destroying it. Furthermore, saturation mutagenesis around the T7 promoter and systematic analyses of environmental conditions reveal design criteria that can be used to optimize information access. This simple but powerful ss-dsDNA architecture lays the foundation for information storage with versatile capabilities.
DNA holds significant promise as a data storage medium due to its density, longevity, and resource and energy conservation. These advantages arise from the inherent biomolecular structure of DNA which differentiates it from conventional storage media. The unique molecular architecture of DNA storage also prompts important discussions on how data should be organized, accessed, and manipulated and what practical functionalities may be possible. Here we leverage thermodynamic tuning of biomolecular interactions to implement useful data access and organizational features. Specific sets of environmental conditions including distinct DNA concentrations and temperatures were screened for their ability to switchably access either all DNA strands encoding full image files from a GB-sized background database or subsets of those strands encoding low resolution, File Preview, versions. We demonstrate File Preview with four JPEG images and provide an argument for the substantial and practical economic benefit of this generalizable strategy to organize data.
The extreme density of DNA presents a compelling advantage over current storage media; however, in order to reach practical capacities, new approaches for organizing and accessing information are needed. Here we use chemical handles to selectively extract unique files from a complex database of DNA mimicking 5 TB of data and design and implement a nested file address system that increases the theoretical maximum capacity of DNA storage systems by five orders of magnitude. These advancements enable the development and future scaling of DNA-based data storage systems with reasonable modern capacities and file access capabilities.
As interest in DNA-based information storage grows, the costs of synthesis have been identified as a key bottleneck. A potential direction is to tune synthesis for data. Data strands tend to be comprised of a small set of recurring code word sequences, and they contain longer sequences of repeated data. To exploit these properties, we propose a new framework called DINOS. DINOS consists of three key parts. (i) The first is a hierarchical strand assembly algorithm, inspired by gene assembly techniques, that can assemble arbitrary data strands from a small set of primitive blocks. (ii) The assembly algorithm relies on our novel formulation for how to construct primitive blocks, spanning a variety of useful configurations, from a set of code words and overhangs. Each primitive block is a code word flanked by a pair of overhangs that are created by a cyclic pairing process that keeps the number of primitive blocks small. Using these primitive blocks, any data strand of arbitrary length can be assembled, theoretically. We show a minimal system for a binary code with as few as 6 primitive blocks, and we generalize our processes to support an arbitrary set of overhangs and code words. (iii) We exploit our hierarchical assembly approach to identify redundant sequences and coalesce the reactions that create them to make assembly more efficient. We evaluate DINOS and describe its key characteristics. For example, the number of reactions needed to make a strand can be reduced by increasing the number of overhangs or the number of code words, but increasing the number of overhangs offers a small advantage over increasing code words while requiring substantially fewer primitive blocks. On the other hand, density is improved more by increasing the number of code words. We also find that a simple redundancy coalescing technique is able to reduce reactions by 90.6% and 41.2% on average for decompressed and compressed data, respectively, even when the smallest data fragments being assembled are 16 bits. With a simple padding heuristic that finds even more redundancy, we can further decrease reactions for the same operating point up to 91.1% and 59% for decompressed and compressed data, respectively, on average. Our approach offers greater density by up to 80% over a prior general purpose gene assembly technique. Finally, in an analysis of synthesis costs in which we make 1 GB volume using de novo synthesis versus making only the primitive blocks with de novo synthesis and otherwise assembling using DINOS, we estimate DINOS as 10 5 × cheaper than de novo synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.