Collective behavior refers to the emergence of complex migration patterns over scales larger than those of the individual elements constituting a system. It plays a pivotal role in biological systems in regulating various processes such as gastrulation, morphogenesis and tissue organization. Here, by combining experimental approaches and numerical modeling, we explore the role of cell density ('crowding'), strength of intercellular adhesion ('cohesion') and boundary conditions imposed by extracellular matrix (ECM) proteins ('constraints') in regulating the emergence of collective behavior within epithelial cell sheets. Our results show that the geometrical confinement of cells into well-defined circles induces a persistent, coordinated and synchronized rotation of cells that depends on cell density. The speed of such rotating large-scale movements slows down as the density increases. Furthermore, such collective rotation behavior depends on the size of the micropatterned circles: we observe a rotating motion of the overall cell population in the same direction for sizes of up to 200 μm. The rotating cells move as a solid body, with a uniform angular velocity. Interestingly, this upper limit leads to length scales that are similar to the natural correlation length observed for unconfined epithelial cell sheets. This behavior is strongly altered in cells that present a downregulation of adherens junctions and in cancerous cell types. We anticipate that our system provides a simple and easy approach to investigate collective cell behavior in a well-controlled and systematic manner.
SUMMARY CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off-switch for Cas9-based applications. Here we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.
Eukaryotic Argonaute proteins induce gene silencing by small RNAguided recognition and cleavage of mRNA targets. Although structural similarities between human and prokaryotic Argonautes are consistent with shared mechanistic properties, sequence and structure-based alignments suggested that Argonautes encoded within CRISPR-cas [clustered regularly interspaced short palindromic repeats (CRISPR)-associated] bacterial immunity operons have divergent activities. We show here that the CRISPR-associated Marinitoga piezophila Argonaute (MpAgo) protein cleaves single-stranded target sequences using 5′-hydroxylated guide RNAs rather than the 5′-phosphorylated guides used by all known Argonautes. The 2.0-Å resolution crystal structure of an MpAgo-RNA complex reveals a guide strand binding site comprising residues that block 5′ phosphate interactions. Using structure-based sequence alignment, we were able to identify other putative MpAgo-like proteins, all of which are encoded within CRISPRcas loci. Taken together, our data suggest the evolution of an Argonaute subclass with noncanonical specificity for a 5′-hydroxylated guide.Argonaute | small noncoding RNA | RNA interference A rgonaute (Ago) proteins bind small RNA or DNA guides, which provide base-pairing specificity for recognition and cleavage of complementary nucleic acid targets. Members of this protein family are present in all three domains of life (1). In eukaryotes, Argonautes are the key effectors of RNA interference (RNAi) pathways that regulate posttranscriptional gene expression (2-4). However, the role of Argonaute proteins in bacteria and archaea, which lack RNAi pathways, remains poorly understood (5).Recent studies suggested that DNA-guided bacterial and archaeal Argonaute proteins are directly involved in host defense by cleaving foreign DNA elements, such as DNA viruses and plasmids (6, 7). In addition, a catalytically inactive Argonaute protein in Rhodobacter sphaeroides (RsAgo) was demonstrated to use RNA guides and possibly recruits an associated nuclease for subsequent target cleavage (8). Despite these divergent modes of action, bacterial and archaeal Argonaute proteins adopt a highly conserved bilobed architecture. Herein, an N-terminal and a PIWI-ArgonauteZwille (PAZ) domain constitute one lobe, whereas the other lobe consists of the middle (MID) domain and the catalytic RNase H-like P element-induced wimpy testis (PIWI) domain (9-15). Molecular structures of a eukaryotic Argonaute MID domain and an Archaeoglobus fulgidus Piwi (AfPiwi) enzyme bound to a guide RNA showed the importance of the 5′-terminal base identity, as well as the 5′ phosphate in guide strand binding, to Ago (10,[13][14][15][16][17]. Notably, recognition of the 5′ end of the guide in the MID domain and guide strand preorganization for target interaction are conserved across the entire Argonaute superfamily (1).The nucleic acid-guided binding and cleavage activities of Argonaute proteins are reminiscent of the activities of RNA-guided proteins within CRISPR-Cas systems [cluste...
CRISPR-Cas systems depend on the Cas1-Cas2 integrase to capture and integrate short foreign DNA fragments into the CRISPR locus, enabling adaptation to new viruses. We present crystal structures of Cas1-Cas2 bound to both donor and target DNA in intermediate and product integration complexes, as well as a cryo-electron microscopy structure of the full CRISPR locus integration complex including the accessory protein Integration Host Factor (IHF). The structures show unexpectedly that indirect sequence recognition dictates integration site selection by favoring deformation of the repeat and the flanking sequences. IHF binding bends the DNA sharply, bringing an upstream recognition motif into contact with Cas1 to increase both the specificity and efficiency of integration. These results explain how the Cas1-Cas2 CRISPR integrase recognizes a sequence-dependent DNA structure to ensure site-selective CRISPR array expansion during the initial step of bacterial adaptive immunity.
Bacterial small RNAs (sRNAs) modulate gene expression by base-pairing with target mRNAs. Many sRNAs require the Sm-like RNA binding protein Hfq as a cofactor. Well-characterized interactions between DsrA sRNA and the rpoS mRNA leader were used to understand how Hfq stimulates sRNA pairing with target mRNAs. DsrA annealing stimulates expression of rpoS by disrupting a secondary structure in the rpoS leader, which otherwise prevents translation. Both RNAs bind Hfq with similar affinity but interact with opposite faces of the Hfq hexamer. Using mutations that block interactions between two of the three components, we demonstrate that Hfq binding to a functionally critical (AAN) 4 motif in rpoS mRNA rescues DsrA binding to a hyperstable rpoS mutant. We also show that Hfq cannot stably bridge the RNAs. Persistent ternary complexes only form when the two RNAs are complementary. Thus, Hfq mainly acts by binding and restructuring the rpoS mRNA. However, Hfq binding to DsrA is needed for maximum annealing in vitro, indicating that transient interactions with both RNAs contribute to the regulatory mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.