Estimates of neonicotinoid resistance indicate an emerging issue for management of F. fusca in the eastern United States. Significant variation in survivorship within states and regions indicated that finer-scale surveys were needed to determine factors (genetic, insecticide use) driving resistance evolution. © 2016 Society of Chemical Industry.
The use of neonicotinoids in citrus (Rutaceae) has increased substantially to help manage the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), a vector of the devastating citrus disease, huanglongbing (HLB). In citrus pest management programs, neonicotinoids are most often applied to the soil as a drench and move through xylem channels from the roots into the foliage. We developed a novel assay to quantify the dose required to kill D. citri following ingestion and compare it with the dose required to kill by contact. The LC50 of the laboratory strain for ingestion of imidacloprid, thiamethoxam, and clothianidin were each approximately 10-fold greater than the respective LC50 by contact exposure. Four field populations were tested to validate comparative exposure of the laboratory strain to imidacloprid and determine the relative susceptibility of field populations to imidacloprid by exposure through ingestion and contact. The contact assay exhibited low (<10) RR50 values for the Vero Beach and Labelle populations when compared to the ingestion assay method. High (>10) RR50 values were observed for the Lake Placid and Lake Alfred populations using the contact and the ingestion method. This research demonstrates that the ingestion assay method described herein is more sensitive in detection of low-level resistance and should be the standard methodology used in monitoring for resistance to systemic insecticides for this global pest. We found D. citri populations with a lower than expected susceptibility to neonicotinoids in the field, which warrants the implementation of resistance management practices to preserve the utility of soil-applied neonicotinoids in citrus.
Neonicotinoids are a key group of insecticides used to manage Diaphorina citri Kuwayama (Hemiptera: Liviidae), in Florida citrus. Diaphorina citri is the vector of Candidatus Liberibacter asiaticus, the presumed causal agent of huanglongbing, a worldwide disease of citrus. A two-season field study was conducted to evaluate the effect of tree size and application rate on the expression of thiamethoxam in young citrus following application to the soil. D. citri adult and nymph abundance was also correlated with thiamethoxam titer in leaves. Tree size and application rate each significantly affected thiamethoxam titer in leaf tissue. The highest mean thiamethoxam titer observed (33.39 ppm) in small trees (mean canopy volume = 0.08 m3) occurred after application of the high rate (0.74 g Platinum 75SG per tree) tested. There was a negative correlation between both nymph and adult abundance with increasing thiamethoxam titer in leaves. A concentration of 64.63 ppm thiamethoxam was required to reach a 1% probability of encountering a flush shoot with at least one adult D. citri, while 19.05 ppm was required for the same probability of encountering nymphs. The LC90 for the field population was 7.62 ppm thiamethoxam when administered through ingestion. Exposure to dosages as low as 7.62 ppm would likely result in sublethal exposure of some proportion of the population, which could exacerbate resistance development. Based on our results, subsequent work should investigate the use of neonicotinoids by foliar rather than soil application to maintain the chemical class in future insecticide management programs in Florida citrus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.