The function of the cystic fibrosis transmembrane conductance regulator (CFTR) as a Cl؊ channel in the apical membrane of epithelial cells is extensively documented. However, less is known about the molecular determinants of CFTR residence in the apical membrane, basal regulation of its Cl ؊ channel activity, and its reported effects on the function of other transporters. These aspects of CFTR function likely require specific interactions between CFTR and unknown proteins in the apical compartment of epithelial cells. Here we report that CFTR interacts with the recently discovered protein, EBP50 (ERM-binding phosphoprotein 50). EBP50 is concentrated at the apical membrane in human airway epithelial cells, in vivo, and CFTR and EBP50 associate in in vitro binding assays. The CFTR-EBP50 interaction requires the COOH-terminal DTRL sequence of CFTR and utilizes either PDZ1 or PDZ2 of EBP50, although binding to PDZ1 is of greater affinity. Through formation of a complex, the interaction between CFTR and EBP50 may influence the stability and/or regulation of CFTR Cl ؊ channel function in the cell membrane and provides a potential mechanism through which CFTR can affect the activity of other apical membrane proteins.Cystic fibrosis (CF) 1 is a lethal autosomal recessive disease characterized by defects in epithelial ion transport (1). CF is caused by mutation in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as a cAMP-regulated Cl Ϫ channel at the apical cell surface (1-3). The CF phenotype includes changes in cellular processes distinct from those involving Cl Ϫ transport, including sodium hyperabsorption and abnormalities in the processing of mucins (4 -6). The most common cause of CF are mutations that lead to the formation of an abnormally folded CFTR protein that does not reach the cell surface (2). Even wild type CFTR is inefficiently transported to the cell surface, with up to 70% of the newly synthesized proteins failing to achieve a stable conformation that escapes quality control mechanisms in the endoplasmic reticulum (2,7,8). Knowledge of the protein-protein interactions that are involved in CFTR-mediated regulation of other epithelial transport proteins, and the interactions that control the trafficking, localization, and regulation of CFTR, is incomplete. Recently, the amino terminus of CFTR was shown to interact with syntaxin 1, with implications both for insertion of CFTR into the plasma membrane and regulation of channel activity (9). Other interactions that stabilize CFTR or regulate its function remain to be identified.Compartmentalization of CFTR in a multiprotein complex might regulate CFTR activity by stabilizing the protein at the cell surface or by increasing the efficiency by which kinases and phosphatases control the channel. The presence of such a complex may also explain how CFTR modulates the activity of other epithelial cell transport proteins. A common mechanism to establish multiprotein complexes is via protein-protein interactions w...
The packaging of genomic DNA into chromatin, often viewed as an impediment to the transcription process, plays a fundamental role in the regulation of gene expression. Chromatin remodeling proteins have been shown to alter local chromatin structure and facilitate recruitment of essential factors required for transcription. Brahma-related gene-1 (BRG1), the central catalytic subunit of numerous chromatin-modifying enzymatic complexes, uses the energy derived from ATP-hydrolysis to disrupt the chromatin architecture of target promoters. In this review, we examine BRG1 as a major coregulator of transcription. BRG1 has been implicated in the activation and repression of gene expression through the modulation of chromatin in various tissues and physiological conditions. Outstanding examples are studies demonstrating that BRG1 is a necessary component for nuclear receptor-mediated transcriptional activation.The remodeling protein is also associated with transcriptional corepressor complexes which recruit remodeling activity to target promoters for gene silencing. Taken together, BRG1 appears to be a critical modulator of transcriptional regulation in cellular processes including transcriptional regulation, replication, DNA repair and recombination.
Oct4 and Sox2 are transcription factors required for pluripotency during early embryogenesis and for the maintenance of embryonic stem cell (ESC) identity. Functional mechanisms contributing to pluripotency are expected to be associated with genes transcriptionally activated by these factors. Here, we show that Oct4 and Sox2 bind to a conserved promoter region of miR-302, a cluster of eight microRNAs expressed specifically in ESCs and pluripotent cells. The expression of miR-302a is dependent on Oct4/Sox2 in human ESCs (hESCs), and miR-302a is expressed at the same developmental stages and in the same tissues as Oct4 during embryogenesis. miR-302a is predicted to target many cell cycle regulators, and the expression of miR-302a in primary and transformed cell lines promotes an increase in S-phase and a decrease in G 1 -phase cells, reminiscent of an ESC-like cell cycle profile. Correspondingly, the inhibition of miR-302 causes hESCs to accumulate in G 1 phase. Moreover, we show that miR-302a represses the productive translation of an important G 1 regulator, cyclin D1, in hESCs. The transcriptional activation of miR-302 and the translational repression of its targets, such as cyclin D1, may provide a link between Oct4/Sox2 and cell cycle regulation in pluripotent cells.Pluripotent stem cells preserve their identity by promoting self-renewal and preventing differentiation. Transcription factors expressed early in development play a key role in regulating these processes. The first cell fate decision in the preimplantation embryo requires Oct4, a transcription factor expressed in the blastocyst that represses differentiation in the inner cell mass (28). Oct4 works in concert with a transcription factor binding partner, Sox2, and the pair is known to activate genes essential for early development (5,29,32,36,41,42). Upon the formation of the late blastocyst, a third factor, Nanog, is required to repress the differentiation of pluripotent cells to visceral and parietal endoderm (26), highlighting the importance of these transcription factors in maintaining pluripotency at early developmental phases. All three of these factors are also expressed in human embryonic stem cells (hESCs) and mouse ESCs (mESCs), and the transcriptional programs orchestrated by the coordinated efforts of these factors are key mechanisms of maintaining pluripotency. Recent studies of ESCs have revealed a considerable number of genomic regions with overlapping Oct4, Sox2, and Nanog binding sites adjacent to genes that are likely important for pluripotency (2, 24). Functional analysis of the genes expressed and regulated by these transcription factors will further elucidate new mechanisms associated with the maintenance of pluripotency.Included in this candidate set of factors are microRNAs (miRNAs) (2, 24). Like Oct4, Sox2, and Nanog, miRNAs have also been implicated in the maintenance of cell fate and the regulation of stem cell differentiation. miRNAs regulate their targets posttranscriptionally by pairing with a short antisense region of t...
Protein kinase A-anchoring proteins (AKAPs) localize the second messenger response to particular subcellular domains by sequestration of the type II protein kinase A. Previously, AKAP120 was identified from a rabbit gastric parietal cell cDNA library; however, a monoclonal antibody raised against AKAP120 labeled a 350-kDa band in Western blots of parietal cell cytosol. Recloning has now revealed that AKAP120 is a segment of a larger protein, AKAP350. We have now obtained a complete sequence of human gastric AKAP350 as well as partial cDNA sequences from human lung and rabbit parietal cells. The genomic region containing AKAP350 is found on chromosome 7q21 and is multiply spliced, producing at least three distinct AKAP350 isoforms as well as yotiao, a protein associated with the N-methyl-D-aspartate receptor. Rabbit parietal cell AKAP350 is missing a sequence corresponding to a single exon in the middle of the molecule located just after the yotiao homology region. Two carboxyl-terminal splice variants were also identified. Both of the major splice variants showed tissue-and cell-specific expression patterns. Immunofluorescence microscopy demonstrated that AKAP350 was associated with centrosomes in many cell types. In polarized Madin-Darby canine kidney cells, AKAP350 localized asymmetrically to one pole of the centrosome, and nocodazole did not alter its localization. During the cell cycle, AKAP350 was associated with the centrosomes as well as with the cleavage furrow during anaphase and telophase. Several epithelial cell types also demonstrated noncentrosomal pools of AKAP350, especially parietal cells, which contained multiple cytosolic immunoreactive foci throughout the cells. The localization of AKAP350 suggests that it may regulate centrosomal and noncentrosomal cytoskeletal systems in many different cell types.Transduction of signals from extracellular stimuli is most commonly accomplished via ligand-receptor binding and generation of a second messenger response. While increases in intracellular second messengers have traditionally been viewed as global cellular events, second messenger effects are often limited to particular regions or organelles within cells. Investigations over the past decade have led to a greater understanding of the mechanisms responsible for the compartmentalization of second messenger effects. These studies have identified a diverse group of scaffolding proteins that sequester both protein kinases and protein phosphatases within specific cellular domains (1, 2). In the case of cAMP-dependent protein kinases, protein kinase A-anchoring proteins (AKAPs) 1 tether the protein kinase A holoenzyme through binding to the regulatory subunit dimer. A growing group of AKAPs that bind the regulatory subunit of type II protein kinase A (R II ) have been reported over the past several years. The first R II -binding protein was identified over 15 years ago when microtubule-associated protein 2 (MAP-2) was described (3, 4). Since that time, several AKAPs have been identified, localizing the type...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.