The non-communicable disease, cancer, is one of the major causes of death across the world and is forecast to increase by 75% to reach close to 25 million cases over the next two decades. Radiotherapy and surgical approaches have been unsuccessful in controlling the incidence of most cancers. The development of chemotherapeutic strategies involving novel small molecule antitumour agents has therefore been the focus area of cancer chemotherapy for several decades as another strategy to combat and control the incidence of cancer. Many natural products as well as several synthetic drugs have a naphthoquinone chromophore. The anticancer activities of naphthoquinones have been the focus of much research to discover novel anticancer agents. The naturally occurring 1,2-naphthoquinone-based compound, ß-Lapachone (ARQ 761), is currently being assessed for its anti-tumour activity against advanced solid tumours. This review describes the most recent applications of naphthoquinones and their derivatives in cancer drug discovery. The biology relevant to the design of novel naphthoquinone anticancer agents is also discussed. Furthermore, the discussion of the biology will contribute to understanding cancer as well as the applications of naphthoquinones as anticancer agents.
In this article, we focus on the synthesis of aryl C-glycosides via Heck coupling. It is organized based on the type of structures used in the assembly of the C-glycosides (also called C-nucleosides) with the following subsections: pyrimidine C-nucleosides, purine C-nucleosides, and monocyclic, bicyclic, and tetracyclic C-nucleosides. The reagents and conditions used for conducting the Heck coupling reactions are discussed. The subsequent conversion of the Heck products to the corresponding target molecules and the application of the target molecules are also described.
A commercial laccase, Suberase® from Novozymes, was used to catalyse the synthesis of 5,6-dihydroxylated benzo[b]furans and catechol derivatives. The yields were, in some cases, similar to or better than that obtained by other enzymatic, chemical or electrochemical syntheses. The synthesised derivatives were screened against renal (TK10), melanoma (UACC62), breast (MCF7) and cervical (HeLa) cancer cell lines. GI50, TGI and LC50 are reported for the first time. Anticancer screening showed that the cytostatic effects of the 5,6-dihydroxylated benzo[b]furans were most effective against the melanoma (UACC62) cancer cell line with several compounds exhibiting potent growth inhibitory activities (GI50=0.77-9.76 µM), of which two compounds had better activity than the anticancer agent etoposide (GI50 0.89 µM). One compound exhibited potent activity (GI50=9.73 µM) against the renal (TK10) cancer cell line and two exhibited potent activity (GI50=8.79 and 9.30 µM) against the breast (MCF7) cancer cell line. These results encourage further studies of the 5,6-dihydroxylated benzo[b]furans for their potential application in anticancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.