Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Subepithelial lesions are frequently encountered and remain a diagnostic challenge. Imaging of subepithelial lesions using endoscopic ultrasound (EUS) can be helpful in narrowing the differential diagnosis of the lesion; however, definitive diagnosis typically requires tissue. Many methods for acquiring tissue exist including EUS-guided fine needle aspiration, Trucut biopsy, and fine needle biopsy. Obtaining adequate tissue is important for cytologic and histologic exams including immunohistochemical stains, thus a great deal of effort has been made to increase tissue acquisition in order to improve diagnostic yield in subepithelial lesions.
Recently, researchers in our laboratory have shown that humans with genetic mutations resulting in high-affinity haemoglobin (HAH) demonstrate better maintained aerobic capacity and peak power output during hypoxic exercise versus normoxic exercise in comparison to humans with normal-affinity haemoglobin.However, the influence of HAH on tissue oxygenation within exercising muscle during normoxia and hypoxia is unknown. Therefore, we examined near-infrared spectroscopy-derived oxygenation profiles of the vastus lateralis during graded cycling exercise in normoxia and hypoxia among humans with HAH (n = 5) and control subjects with normal-affinity haemoglobin (n = 12). The HAH group elicited a blunted increase of deoxygenated haemoglobin + myoglobin during hypoxic exercise compared with the control group (P = 0.03), suggesting reduced fractional oxygen extraction in the HAH group. In addition, the HAH group maintained a higher level of muscle tissue oxygen saturation during normoxic exercise (HAH, 75 ± 4% vs. controls, 65 ± 3%, P = 0.049) and there were no differences between groups in muscle tissue oxygen saturation during hypoxic exercise (HAH, 68 ± 3% vs. controls, 68 ± 2%, P = 0.943).Overall, our results suggest that humans with HAH might demonstrate divergent patterns of fractional oxygen extraction during hypoxic exercise and elevated muscle tissue oxygenation during normoxic exercise compared with control subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.