We prove that certain non-exact magnetic Hamiltonian systems on products of closed hyperbolic surfaces and with a potential function of large oscillation admit non-constant contractible periodic solutions of energy below the Mañé critical value. For that we develop a theory of holomorphic curves in symplectizations of non-compact contact manifolds that arise as the covering space of a virtually contact structure whose contact form is bounded with all derivatives up to order three.
Motivated by recent developments in proving the Weinstein conjecture we introduce the notion of covering contact connected sum for virtually contact manifolds and construct virtually contact structures on boundaries of subcritical handle bodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.