Despite the routine nature of estimating overlapping space use in ecological research, to date no formal inferential framework for home range overlap has been available to ecologists. Part of this issue is due to the inherent difficulty of comparing the estimated home ranges that underpin overlap across individuals, studies, sites, species, and times. As overlap is calculated conditionally on a pair of home range estimates, biases in these estimates will propagate into biases in overlap estimates. Further compounding the issue of comparability in home range estimators is the historical lack of confidence intervals on overlap estimates. This means that it is not currently possible to determine if a set of overlap values is statistically different from one another. As a solution, we develop the first rigorous inferential framework for home range overlap. Our framework is based on the autocorrelated‐Kernel density estimation (AKDE) family of home range estimators, which correct for biases due to autocorrelation, small effective sample size, and irregular sampling in time. Collectively, these advances allow AKDE estimates to validly be compared even when sampling strategies differ. We then couple the AKDE estimates with a novel bias‐corrected Bhattacharyya coefficient (BC) to quantify overlap. Finally, we propagate uncertainty in the AKDE estimates through to overlap and thus are able to put confidence intervals on the BC point estimate. Using simulated data, we demonstrate how our inferential framework provides accurate overlap estimates, and reasonable coverage of the true overlap, even at small sample sizes. When applied to empirical data, we found that building an interaction network for Mongolian gazelles Procapra gutturosa based on all possible ties, vs. only those ties with statistical support, substantially influenced the network’s properties and any potential biological inferences derived from it. Our inferential framework permits researchers to calculate overlap estimates that can validly be compared across studies, sites, species, and times, and test whether observed differences are statistically meaningful. This method is available via the R package ctmm.
Large networks of weather radars are comprehensive instruments for studying bird migration. For example, the US WSR‐88D network covers the entire continental US and has archived data since the 1990s. The data can quantify both broad and fine‐scale bird movements to address a range of migration ecology questions. However, the problem of automatically discriminating precipitation from biology has significantly limited the ability to conduct biological analyses with historical radar data. We develop MistNet, a deep convolutional neural network to discriminate precipitation from biology in radar scans. Unlike prior machine learning approaches, MistNet makes fine‐scaled predictions and can collect biological information from radar scans that also contain precipitation. MistNet is based on neural networks for images, and includes several architecture components tailored to the unique characteristics of radar data. To avoid a massive human labelling effort, we train MistNet using abundant noisy labels obtained from dual polarization radar data. In historical and contemporary WSR‐88D data, MistNet identifies at least 95.9% of all biomass with a false discovery rate of 1.3%. Dual polarization training data and our radar‐specific architecture components are effective. By retaining biomass that co‐occurs with precipitation in a single radar scan, MistNet retains 15% more biomass than traditional whole‐scan approaches to screening. MistNet is fully automated and can be applied to datasets of millions of radar scans to produce fine‐grained predictions that enable a range of applications, from continent‐scale mapping to local analysis of airspace usage. Radar ornithology is advancing rapidly and leading to significant discoveries about continent‐scale patterns of bird movements. General‐purpose and empirically validated methods to quantify biological signals in radar data are essential to the future development of this field. MistNet can enable large‐scale, long‐term, and reproducible measurements of whole migration systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.