Transition metal perovskite chalcogenides are a new class of versatile semiconductors with high absorption coefficient and luminescence efficiency. Polycrystalline materials synthesized by an iodine-catalyzed solid-state reaction show distinctive optical colors and tunable bandgaps across the visible range in photoluminescence, with one of the materials' external efficiency approaching the level of single-crystal InP and CdSe.
Transition metal perovskite chalcogenides, a class of materials with rich tunability in functionalities, are gaining increased attention as candidate materials for renewable energy applications. Perovskite oxides are considered excellent n-type thermoelectric materials.Compared to oxide counterparts, we expect the chalcogenides to possess more favorable thermoelectric properties such as lower lattice thermal conductivity and smaller band gap, making them promising material candidates for high temperature thermoelectrics. Thus, it is necessary to study the thermal properties of these materials in detail, especially thermal stability, to evaluate their potential. In this work, we report the synthesis and thermal stability study of five compounds, a-SrZrS 3 , b-SrZrS 3 , BaZrS 3 , Ba 2 ZrS 4 , and Ba 3 Zr 2 S 7 . These materials cover several structural types including distorted perovskite, needle-like, and Ruddlesden-Popper phases.Differential scanning calorimeter and thermo-gravimetric analysis measurements were performed up to 1200°C in air. Structural and chemical characterizations such as X-ray diffraction, Raman spectroscopy, and energy dispersive analytical X-ray spectroscopy were performed on all the samples before and after the heat treatment to understand the oxidation process. Our studies show that perovskite chalcogenides possess excellent thermal stability in air at least up to 600°C.
The making of BaZrS 3 thin films by molecular beam epitaxy (MBE) is demonstrated. BaZrS 3 forms in the orthorhombic distorted-perovskite structure with corner-sharing ZrS 6 octahedra. The single-step MBE process results in films smooth on the atomic scale, with near-perfect BaZrS 3 stoichiometry and an atomically sharp interface with the LaAlO 3 substrate. The films grow epitaxially via two competing growth modes: buffered epitaxy, with a self-assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated-cube-on-cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in highquality epitaxial thin films, as has been long-established for other systems including Si-Ge, III-Vs, and II-VIs. The methods demonstrated here also represent a revival of gas-source chalcogenide MBE.
The rates of excited-state decay through recombination processes determine the usefulness of a semiconductor for ambipolar devices. We find that recombination rates in chalcogenide perovskites are promising for continued progress towards solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.