An HDM genome draft produced from genomic, transcriptomic, and proteomic experiments revealed allergen genes and a diverse endosymbiotic microbiome, providing a tool for further identification and characterization of HDM allergens and development of diagnostics and immunotherapeutic vaccines.
The neonatal mouse heart is capable of transiently regenerating after injury from postnatal day (P) 0-7 and macrophages are found important in this process. However, whether macrophages alone are sufficient to orchestrate this regeneration; what regulates cardiomyocyte proliferation; why cardiomyocytes do not proliferate after P7; and whether adaptive immune cells such as regulatory T-cells (Treg) influence neonatal heart regeneration have less studied.
Methods
: We employed both loss- and gain-of-function transgenic mouse models to study the role of Treg in neonatal heart regeneration. In loss-of-function studies, we treated mice with the lytic anti-CD25 antibody that specifically depletes Treg; or we treated FOXP3
DTR
with diphtheria toxin that specifically ablates Treg. In gain-of-function studies, we adoptively transferred hCD2
+
Treg from NOD.
Foxp3
hCD2
to NOD/SCID that contain Treg as the only T-cell population. Furthermore, we performed single-cell RNA-sequencing of Treg to uncover paracrine factors essential for cardiomyocyte proliferation.
Results
: Unlike their wild type counterparts, NOD/SCID mice that are deficient in T-cells but harbor macrophages fail to regenerate their injured myocardium at as early as P3. During the first week of injury, Treg are recruited to the injured cardiac muscle but their depletion contributes to more severe cardiac fibrosis. On the other hand, adoptive transfer of Treg results in mitigated fibrosis and enhanced proliferation and function of the injured cardiac muscle. Mechanistically, single-cell transcriptomic profiling reveals that Treg could be a source of regenerative factors. Treg directly promote proliferation of both mouse and human cardiomyocytes in a paracrine manner; and their secreted factors such as CCL24, GAS6 or AREG potentiate neonatal cardiomyocyte proliferation. By comparing the regenerating P3 and non-regenerating P8 heart, there is a significant increase in the absolute number of intracardiac Treg but the whole transcriptomes of these Treg do not differ regardless of whether the neonatal heart regenerates. Furthermore, even adult Treg, given sufficient quantity, possess the same regenerative capability.
Conclusion
: Our results demonstrate a regenerative role of Treg in neonatal heart regeneration. Treg can directly facilitate cardiomyocyte proliferation in a paracrine manner.
Brain neurons and tissues respond to sublethal injury by activating endogenous protective pathways. Recently, following the failure of a large number of clinical trials for protective strategies against stroke that aim to inhibit a specific ischemia response pathway, endogenous neuroprotection has emerged as a more promising and hopeful strategy for development of therapeutics against stroke and neurodegenerative disorders. Neuroglobin (Ngb) is an oxygen-binding globin protein that is highly and specifically expressed in brain neurons. Accumulating evidence have clearly demonstrated that Ngb is an endogenous neuroprotective molecule against hypoxic/ischemic and oxidative stress-related insults in cultured neurons and animals, as well as neurodegenerative disorders such as Alzheimer’s disease, thus any pharmacological strategy that can up-regulate endogenous Ngb expression may lead to novel therapeutics against these brain disorders. In this review, we summarize recent studies about the biological function, regulation of gene expression, and neuroprotective mechanisms of Ngb. Furthermore, strategies for identification of chemical compounds that can up-regulate endogenous Ngb expression for neuroprotection against stroke and neurodegenerative disorders are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.