Aim: Duchenne Muscular Dystrophy (DMD) results in a deficiency of dystrophin expression in patient muscle fibers, leading to progressive muscle degeneration. Treatment of DMD has undertaken current transformation with the advancement of novel gene therapy and molecular biology techniques, which are secure, well-tolerated, and effective therapeutic approaches. Introduction: DMD gene therapies have mainly focused on young DMD patients as in vivo animal model trials have been performed in 0–1-month DMD mice. However, it has not yet been answered how micro-dystrophin encoding lentiviral treatment affects Dystrophin expression and DMD symptoms in 10-month mdx mice. Methods: We planned to integrate the micro-Dystrophin gene sequence into the muscle cells by viral transfer, using micro-Dystrophin-encoding lentivirus to reduce the dystrophic pathology in late-stage dmd mice. The histopathological and physiological-functional regeneration activities of the lentiviral-micro-Dystrophin gene therapy methods were compared, along with changes in temporal Dystrophin expression and their functionality, toxicity, and gene expression level. method: We planned to integrate the micro-Dystrophin gene sequence into the muscle cells by viral transfer, using micro-Dystrophin-encoding lentivirus to reduce the dystrophic pathology in late-stage dmd mice. The histopathological and physiological-functional regeneration activities of the lentiviral-micro-Dystrophin gene therapy methods were compared, along with changes in temporal Dystrophin expression and their functionality, toxicity, and gene expression level. Results: Here, we showed that the micro-dystrophin transgene transfers intramuscularly and intraperitoneally in late-stage dmd-mdx-4cv mice restored dystrophin expression in the skeletal and cardiac muscle (p <0.001). Furthermore, motor performance analysis, including hanging and tracking tests, improved statistically significantly after the treatment (p <0.05). Conclusion: Consequently, this study suggests that patients in the late stages of muscular dystrophy can benefit from lentiviral micro-dystrophin gene therapies to present an improvement in dystrophic muscle pathology. conclusion: Consequently, this study suggests that patients in the late stages of muscular dystrophy can benefit from the lentiviral micro-dystrophin gene therapies to present an improvement in dystrophic muscle pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.