In order to design bioresorbable implants, it is important to have a mathematical model to predict polymer degradation and corresponding drug release. However, very different behaviours of polymer degradation have been observed and there is no single model that can capture all these behaviours. For the first time, the model presented in this paper is capable of capture all these observed behaviours by switching on and off different underlying mechanisms. Unlike the existing reaction-diffusion models, the model presented here can follow the degradation and drug release all the way to the full disappearance of an implant.
Polyester microspheres are extensively studied for controlled release drug delivery devices, and many models have been developed to describe drug release from the bulk polymer.However, the interaction between drugs and polymers is ignored in most of the existing mathematical models. This paper presents a mechanistic model which captures the interplay between acidic drugs and bioresorbable polyesters. The model considers the autocatalytic effect on polymer degradation arising from carboxylic acid end groups of oligomers and drug molecules. Hence, the enhancing effect of acidic drug on the rate of degradation was fully considered. On the other hand the drug release from polyester microspheres is controlled by drug diffusion from polymer matrix. The drug diffusion coefficient depends strongly on the level of degradation of the polymer. This effect is also included in the model. It is shown that the model can effectively predict experimental data in the literature for both polymer degradation and drug release. Furthermore the model is used to design different systems of microspheres which release drugs with either a zero order profile or burst followed by zero order release profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.