Studying the mismatch between perception and reality helps us better understand the constructive nature of the visual brain. The Pinna-Brelstaff motion illusion is a compelling example illustrating how a complex moving pattern can generate an illusory motion perception. When an observer moves toward (expansion) or away (contraction) from the Pinna-Brelstaff figure, the figure appears to rotate. The neural mechanisms underlying the illusory complex-flow motion of rotation, expansion, and contraction remain unknown. We studied this question at both perceptual and neuronal levels in behaving male macaques by using carefully parametrized Pinna-Brelstaff figures that induce the above motion illusions. We first demonstrate that macaques perceive illusory motion in a manner similar to that of human observers. Neurophysiological recordings were subsequently performed in the middle temporal area (MT) and the dorsal portion of the medial superior temporal area (MSTd). We find that subgroups of MSTd neurons encoding a particular global pattern of real complex-flow motion (rotation, expansion, contraction) also represent illusory motion patterns of the same class. They require an extra 15 ms to reliably discriminate the illusion. In contrast, MT neurons encode both real and illusory local motions with similar temporal delays. These findings reveal that illusory complex-flow motion is first represented in MSTd by the same neurons that normally encode real complex-flow motion. However, the extraction of global illusory motion in MSTd from other classes of real complex-flow motion requires extra processing time. Our study illustrates a cascaded integration mechanism from MT to MSTd underlying the transformation from external physical to internal nonveridical flow-motion perception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.