While real world challenges typically define visual categories with language words or phrases, most visual classification methods define categories with numerical indices. However, the language specification of the classes provides an especially useful prior for biased and noisy datasets, where it can help disambiguate what features are taskrelevant. Recently, large-scale multimodal models have been shown to recognize a wide variety of high-level concepts from a language specification even without additional image training data, but they are often unable to distinguish classes for more fine-grained tasks. CNNs, in contrast, can extract subtle image features that are required for finegrained discrimination, but will overfit to any bias or noise in datasets. Our insight is to use high-level language specification as advice for constraining the classification evidence to task-relevant features, instead of distractors. To do this, we ground task-relevant words or phrases with attention maps from a pretrained large-scale model. We then use this grounding to supervise a classifier's spatial attention away from distracting context. We show that supervising spatial attention in this way improves performance on classification tasks with biased and noisy data, including ∼3−15% worst-group accuracy improvements and ∼41−45% relative improvements on fairness metrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.