The development of high-intensity ultrafast laser facilities provides the possibility to create novel physical phenomena and matter states. The timing fluctuation of the laser pulses is crucial for pump–probe experiments, which is one of the vital means to observe the ultrafast dynamics driven by intense laser pulses. In this paper, we demonstrate the timing fluctuation characterization and control of the front end of a 100-PW laser that is composed of a high-contrast optical parametric amplifier (seed) and a 200-TW optical parametric chirped pulse amplifier (preamplifier). By combining the timing jitter measurement with a feedback system, the laser seed and preamplifier are synchronized to the reference with timing fluctuations of 1.82 and 4.48 fs, respectively. The timing system will be a key prerequisite for the stable operation of 100-PW laser facilities and provide the basis for potential pump–probe experiments performed on the laser.
We propose to obtain kHz, 10s TW, femtosecond sources through optical parametric chirped pulse amplification (OPCPA) pumped by Yb:YAG thin disk lasers. The final amplifiers of the OPCPA are based on LGS (LiGaS2) crystals with wide transparent range. To suppress the quantum defect for high efficiency, the final amplifiers are designed such that the wavelength of the signal is set very close to 1.03 μm, while the idler spectra span from 4–8 μm. Multiple crystals with different phase-matching configuration can be employed for the amplification of different spectral regions to support broadband pulse amplification. According to the numerical simulations, the pulse duration from Yb:YAG lasers can be shortened to 20–30 fs pulse with efficiency beyond 60%. This technique is energy scalable with the size of the LGS crystal size and can support a 26 TW pulse with current available LGS. The output pulses are ideal drivers for secondary light and particle source generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.