Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Antimicrobial resistance (AMR) is becoming a major global-health concern prompting an urgent need for highly-sensitive and rapid diagnostic technology. Traditional assays available for monitoring bacterial cultures are time-consuming and labor-intensive. We present a magnesium zinc oxide (MZO) nanostructure-modified quartz crystal microbalance (MZO-QCM) biosensor to dynamically monitor antimicrobial effects on E. coli and S. cerevisiae. MZO nanostructures were grown on the top electrode of a standard QCM using metal-organic chemical-vapor deposition (MOCVD). The MZO nanostructures are chosen for their multifunctionality, biocompatibility, and giant effective sensing surface. The MZO surface-wettability and morphology are controlled, offering high-sensitivity to various biological/biochemical species. MZO-nanostructures showed over 4-times greater cell viability over ZnO due to MZO releasing 4-times lower Zn density in the cell medium than ZnO. The MZO-QCM was applied to detect the effects of ampicillin and tetracycline on sensitive and resistant strains of E.coli, as well as effects of amphotericin-B and miconazole on S. cerevisiae through the device's time-dependent frequency shift and motional resistance. The MZO-QCM showed 4-times more sensitivity over ZnO-QCM and over 10-times better than regular QCM. For comparison, the optical density at 600nm (OD) method and the cell viability assay were employed as standard references to verify the detection results from MZO-QCM. In the case of S. cerevisiae, the OD method failed to distinguish between cytotoxic and cytostatic drug effects whereas the MZO-QCM was able to accurately detect the drug effects. The MZO-QCM biosensor provides a promising technology enabling dynamic and rapid diagnostics for antimicrobial drug development and AMR detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.