Flexible supercapacitors have attracted increasing interests due to their high power density, long-term cycling life and excellent safety. Liking other energy storage devices, flexible supercapacitors show serious performance degradation as...
Social stress, a common stressor, causes multiple forms of physical and mental dysfunction. Prolonged exposure to social stress is associated with a higher risk of psychological disorders, including anxiety disorders and major depressive disorder (MDD). The orexinergic system is involved in the regulation of multiple motivated behaviors. The current study examined the regulatory effect of orexinergic projections from the lateral hypothalamic area (LHA) to the lateral habenula (LHb) in depression- and anxiety-like behaviors after chronic social defeat stress. When mice were defeated during social interaction, both orexinergic neurons in the LHA and glutamatergic neurons in the LHb were strongly activated, as indicated by the FosTRAP strategy. Infusion of orexin in the LHb significantly alleviated social avoidance and depression-like behaviors induced by chronic social defeat stress. Administration of an orexin receptor 2 antagonist in the LHb further aggravated the depressive phenotype. Photoactivation of orexinergic cell bodies in the LHA or terminals in the LHb relieved anxiety-like behaviors induced by chronic social defeat stress. Collectively, we identified the antidepressant and anxiolytic effects of the circuit from LHA orexinergic neurons to the LHb in response to chronic social stress, providing new evidence of the antidepressant properties of LHA orexin circuits.
The high electrical output performance and excellent droplet-repellency of amphiphobic TENG based on silica enhanced thermoplastic polymeric nanofiber membranes will make it more favorable to be utilized in a harsh environment.
Supercapacitors with high power density and an ultralong cyclic lifetime have been intensively investigated. However, the crucial challenge of their rapid self‐discharge process is often neglected in most cases. A heterogeneous interface formed between two layers of polymer electrolytes is designed, in which a polyanion and a polycation are added into a common matrix of polymer electrolyte, respectively. By using the heterogeneous polymer electrolyte (HPE) as the separator simultaneously, the resultant supercapacitors exhibit comparable electrochemical performance to that of devices based on traditional polymer electrolytes. The HPE‐based supercapacitors using both electric double‐layer capacitive and pseudocapacitive electrodes show at least one time longer self‐discharge time than that of devices based on homogenous polymer electrolyte, especially for the electrode in an electrolyte containing polyanion served as a positive pole during the charging process. Because of the same polymer matrix used, the heterojunction structure of the HPE exhibits excellent stability without obvious phase separation during thousands of charge/discharge and repeated bending cycles. This novel strategy by interface engineering of electrolyte to suppress the self‐discharge behavior of supercapacitors is very meaningful to promote their practical applications.
The sustainable and low-cost separator is highly required for electrochemical energy storage systems. Herein, a type of modified natural wood films with excellent mechanical property, ion conductivity and thermal stability...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.