In this work we consider a class of uncertainty quantification problems where the system performance or reliability is characterized by a scalar parameter y. The performance parameter y is random due to the presence of various sources of uncertainty in the system, and our goal is to estimate the probability density function (PDF) of y. We propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive importance sampling algorithm, to compute the PDF of interest. Moreover, we develop an adaptive algorithm to construct local Gaussian process surrogates to further accelerate the MMC iterations. With numerical examples we demonstrate that the proposed method can achieve several orders of magnitudes of speedup over the standard Monte Carlo method.
We propose a high dimensional Bayesian inference framework for learning heterogeneous dynamics of a COVID-19 model, with a specific application to the dynamics and severity of COVID-19 inside and outside long-term care (LTC) facilities. We develop a heterogeneous compartmental model that accounts for the heterogeneity of the time-varying spread and severity of COVID-19 inside and outside LTC facilities, which is characterized by time-dependent stochastic processes and time-independent parameters in
1500 dimensions after discretization. To infer these parameters, we use reported data on the number of confirmed, hospitalized, and deceased cases with suitable post-processing in both a deterministic inversion approach with appropriate regularization as a first step, followed by Bayesian inversion with proper prior distributions. To address the curse of dimensionality and the ill-posedness of the high-dimensional inference problem, we propose use of a dimension-independent projected Stein variational gradient descent method, and demonstrate the intrinsic low-dimensionality of the inverse problem. We present inference results with quantified uncertainties for both New Jersey and Texas, which experienced different epidemic phases and patterns. Moreover, we also present forecasting and validation results based on the empirical posterior samples of our inference for the future trajectory of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.