Forecasting future values of Colombian companies traded on the New York Stock Exchange is a daily challenge for investors, due to these stocks’ high volatility. There are several forecasting models for forecasting time series data, such as the autoregressive integrated moving average (ARIMA) model, which has been considered the most-used regression model in time series prediction for the last four decades, although the ARIMA model cannot estimate non-linear regression behavior caused by high volatility in the time series. In addition, the support vector regression (SVR) model is a pioneering machine learning approach for solving nonlinear regression estimation procedures. For this reason, this paper proposes using a hybrid model benefiting from ARIMA and support vector regression (SVR) models to forecast daily and cumulative returns of selected Colombian companies. For testing purposes, close prices of Bancolombia, Ecopetrol, Tecnoglass, and Grupo Aval were used; these are relevant Colombian organizations quoted on the New York Stock Exchange (NYSE).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.