Severe cases of COVID-19 are characterized by a strong inflammatory process that may ultimately lead to organ failure and patient death. The NLRP3 inflammasome is a molecular platform that promotes inflammation via cleavage and activation of key inflammatory molecules including active caspase-1 (Casp1p20), IL-1β and IL-18. Although the participation of the inflammasome in COVID-19 has been highly speculated, the inflammasome activation and participation in the outcome of the disease is unknown. Here we demonstrate that the NLRP3 inflammasome is activated in response to SARS-CoV-2 infection and it is active in COVID-19, influencing the clinical outcome of the disease. Studying moderate and severe COVID-19 patients, we found active NLRP3 inflammasome in PBMCs and tissues of post-mortem patients upon autopsy. Inflammasome-derived products such as Casp1p20 and IL-18 in the sera correlated with the markers of COVID-19 severity, including IL-6 and LDH. Moreover, higher levels of IL-18 and Casp1p20 are associated with disease severity and poor clinical outcome. Our results suggest that the inflammasome is key in the pathophysiology of the disease, indicating this platform as a marker of disease severity and a potential therapeutic target for COVID-19.
Inflammasome activation is associated with disease severity in patients who are infected with SARS-CoV-2 and influenza viruses, but the specific cell types involved in inflammasome activation, as well as the balance of inflammasome activation versus viral replication in COVID-19 exacerbation and the induction of patient death, are unknown. In this study, we assessed lung autopsies of 47 COVID-19 and 12 influenza fatal cases and examined the inflammatory profiles and inflammasome activation; additionally, we correlated these factors with clinical and histopathological patient conditions. We observed an overall stronger inflammasome activation in lethal cases of SARS-CoV-2 compared to influenza and found a different profile of inflammasome-activating cells during these diseases. In COVID-19 patients, inflammasome activation is mostly mediated by macrophages and endothelial cells, whereas in influenza, type I and type II pneumocytes contribute more significantly. An analysis of gene expression allowed for the classification of COVID-19 patients into two different clusters. Cluster 1 (n=16 patients) died with higher viral loads and exhibited a reduced inflammatory profile than Cluster 2 (n=31 patients). Illness time, mechanical ventilation time, pulmonary fibrosis, respiratory functions, histopathological status, thrombosis, and inflammasome activation significantly differed between the two clusters. Our data demonstrated two distinct profiles in lethal cases of COVID-19, thus indicating that the balance of viral replication and inflammasome-mediated pulmonary inflammation may lead to different clinical conditions, yet both lead to patient death. An understanding of this process is critical for decisions between immune-mediated or antiviral-mediated therapies for the treatment of critical cases of COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.