Sequence models are a critical component of modern NLP systems, but their predictions are difficult to explain. We consider model explanations though rationales, subsets of context that can explain individual model predictions. We find sequential rationales by solving a combinatorial optimization: the best rationale is the smallest subset of input tokens that would predict the same output as the full sequence. Enumerating all subsets is intractable, so we propose an efficient greedy algorithm to approximate this objective. The algorithm, which is called greedy rationalization, applies to any model. For this approach to be effective, the model should form compatible conditional distributions when making predictions on incomplete subsets of the context. This condition can be enforced with a short finetuning step. We study greedy rationalization on language modeling and machine translation. Compared to existing baselines, greedy rationalization is best at optimizing the sequential objective and provides the most faithful rationales. On a new dataset of annotated sequential rationales, greedy rationales are most similar to human rationales.
Ideal point models analyze lawmakers' votes to quantify their political positions, or ideal points. But votes are not the only way to express a political position. Lawmakers also give speeches, release press statements, and post tweets. In this paper, we introduce the text-based ideal point model (), an unsupervised probabilistic topic model that analyzes texts to quantify the political positions of its authors. We demonstrate the with two types of politicized text data: U.S. Senate speeches and senator tweets. Though the model does not analyze their votes or political affiliations, the separates lawmakers by party, learns interpretable politicized topics, and infers ideal points close to the classical vote-based ideal points. One benefit of analyzing texts, as opposed to votes, is that the can estimate ideal points of anyone who authors political texts, including non-voting actors. To this end, we use it to study tweets from the 2020 Democratic presidential candidates. Using only the texts of their tweets, it identifies them along an interpretable progressive-tomoderate spectrum.
While normalizing flows have led to significant advances in modeling highdimensional continuous distributions, their applicability to discrete distributions remains unknown. In this paper, we show that flows can in fact be extended to discrete events-and under a simple change-of-variables formula not requiring logdeterminant-Jacobian computations. Discrete flows have numerous applications. We consider two flow architectures: discrete autoregressive flows that enable bidirectionality, allowing, for example, tokens in text to depend on both left-to-right and right-to-left contexts in an exact language model; and discrete bipartite flows that enable efficient non-autoregressive generation as in RealNVP. Empirically, we find that discrete autoregressive flows outperform autoregressive baselines on synthetic discrete distributions, an addition task, and Potts models; and bipartite flows can obtain competitive performance with autoregressive baselines on characterlevel language modeling for Penn Tree Bank and text8. * Work done as an intern at Google Brain. Supported by NSF grant DGE-1644869. † Work done as an AI resident.
Understanding career trajectories-the sequences of jobs that individuals hold over their working lives-is important to economists for studying labor markets. In the past, economists have estimated relevant quantities by fitting predictive models to small surveys, but in recent years large datasets of online resumes have also become available. These new datasets provide job sequences of many more individuals, but they are too large and complex for standard econometric modeling. To this end, we adapt ideas from modern language modeling to the analysis of large-scale job sequence data. We develop CAREER, a transformer-based model that learns a low-dimensional representation of an individual's job history. This representation can be used to predict jobs directly on a large dataset, or can be "transferred" to represent jobs in smaller and better-curated datasets. We fit the model to a large dataset of resumes, 24 million people who are involved in more than a thousand unique occupations. It forms accurate predictions on held-out data, and it learns useful career representations that can be fine-tuned to make accurate predictions on common economics datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.