A beam-shape composite actuator using shape memory alloy (SMA) wires as the active component, termed a Bio-Inspired Shape Memory Alloy Composite (BISMAC), was designed to provide a large deformation profile. The BISMAC design was inspired by contraction of a jellyfish bell, utilizing the rowing mechanism for locomotion. Characterization of maximum deformation in underwater conditions was performed for different actuator configurations to analyze the effect of different design parameters, including silicone thickness, flexible steel thickness and distance between the SMA and flexible steel. A constant cross-section (CC)-BISMAC of length 16 cm was found to achieve deformation with a radius of curvature of 3.5 cm. Under equilibrium conditions, the CC-BISMAC was found to achieve 80% of maximum deformation, consuming 7.9 J/cycle driven at 16.2 V/0.98 A and a frequency of 0.25 Hz. A detailed analytical model was developed using the transfer matrix method and a 1D finite beam element (FE) model to simulate the behavior of the BISMAC incorporating gravity, buoyancy and SMA parameters. The FE and transfer matrix models had a maximum deformation error norm of 1.505 and 1.917 cm in comparison with experimentally observed beam deformation in the CC-BISMAC. The mean curvatures predicted by the FE and transfer matrix methods were 0.292 cm −1 and 0.295 cm −1 compared to a mean experimental curvature of 0.294 cm −1 , a percentage error of −5.4% and 2.77%, respectively. Using the developed analytical model, an actuator design was fabricated mimicking the maximum deformation profile of jellyfish of the species Aurelia aurita (AA). The designed AA-BISMAC achieved a maximum curvature of 0.428 cm −1 as compared to 0.438 cm −1 for A. aurita with an average square root error of 0.043 cm −1 , 10.2% of maximum A. aurita curvature.
Harvesting small thermal gradients effectively to generate electricity still remains a challenge. Ujihara et al (2007 Appl. Phys. Lett. 91 093508) have recently proposed a thermo-magnetic energy harvester that incorporates a combination of hard and soft magnets on a vibrating beam structure and two opposing heat transfer surfaces. This design has many advantages and could present an optimum solution to harvest energy in low temperature gradient conditions. In this paper, we describe a multi-physics numerical model for this harvester configuration that incorporates all the relevant parameters, including heat transfer, magnetic force, beam vibration, contact surface and piezoelectricity. The model was used to simulate the complete transient behavior of the system. Results are presented for the evolution of the magnetic force, changes in the internal temperature of the soft magnet (gadolinium (Gd)), thermal contact conductance, contact pressure and heat transfer over a complete cycle. Variation of the vibration frequency with contact stiffness and gap distance was also modeled. Limit cycle behavior and its bifurcations are illustrated as a function of device parameters. The model was extended to include a piezoelectric energy harvesting mechanism and, using a piezoelectric bimorph as spring material, a maximum power of 318 μW was predicted across a 100 kΩ external load.
Recently, bio-inspired shape memory alloy composite (BISMAC) actuators have been shown to mimic the deformation characteristics of natural jellyfish medusa. In this study, a constant cross-section BISMAC actuator was characterized in terms of bending deflection and force in conjunction with microscopy to understand its deformation mechanism. The actuator showed bending deflection of 111% with respect to the active length along with a blocking force of 0.061 N. The resulting energy density of the composite actuator was 4929 J m −3 at an input voltage and current level of 12 V and 0.7 A, respectively. For a dry-state actuator, this performance is extremely high and represents an optimum combination of force and deflection. Experiments reveal that BISMAC's performance is related to the moment induced from tip attachment of the shape memory alloy (SMA) rather than to friction within the composite structure. A physics-based model of BISMAC structure is presented which shows that the actuator is highly sensitive to the distance between the SMA wire and the incompressible component. While SMA has both stress and strain limitations, the limiting factor in BISMAC actuators is dependent on separation distance. The limiting factor in BISMAC's suitability for mimicking the performance of medusa was experimentally found to be related to the maximum 4% strain of the SMA and not its force generation.
Recently, there has been significant interest in developing underwater vehicles inspired by jellyfish. One of these notable efforts includes the artificial Aurelia aurita (Robojelly). The artificial A. aurita is able to swim with similar proficiency to the A. aurita species of jellyfish even though its deformation profile does not completely match the natural animal. In order to overcome this problem, we provide a systematic finite element model (FEM) to simulate the transient behavior of the artificial A. aurita vehicle utilizing bio-inspired shape memory alloy composite (BISMAC) actuators. The finite element simulation model accurately captures the hyperelastic behavior of EcoFlex (Shore hardness-0010) room temperature vulcanizing silicone by invoking a three-parameter Mooney-Rivlin model. Furthermore, the FEM incorporates experimental temperature transformation curves of shape memory alloy wires by introducing negative thermal coefficient of expansion and considers the effect of gravity and fluid buoyancy forces to accurately predict the transient deformation of the vehicle. The actual power cycle used to drive artificial A. aurita vehicle was used in the model. The overall profile error between FEM and the vehicle profile is mainly due to the difference in initial relaxed profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.