Large scale sensor networks can be efficiently managed by dividing them into several clusters. With the help of cluster heads, each cluster communicates using some routing schedule. It is essential to rotate the role of cluster heads in a cluster to distribute energy consumption if we do not have dedicated high energy cluster heads. Usually routing and cluster head selection for such networks have been separately solved. If cluster heads are selected with the consideration of routing and routing schedule is prepared with the consideration of selected cluster heads, it can help each other. We have proposed an integrated approach of cluster head selection and routing in two tier wireless sensor network (WSN) using Genetic Algorithm based cluster head selection with A-Star algorithm based routing method to extend life of WSN. This approach can lead to significant improvements in the network lifetime over other techniques.
Target tracking is one of the most widely used applications of wireless sensor network (WSN). Efficient usage of energy is a key issue in WSN application such as target tracking. Another important criterion is a tracking accuracy that can be achieved by using appropriate tracking mechanism. Because of the special characteristic of WSN, there is a trade-off between tracking accuracy and power consumption. Our aim is to improve tracking accuracy as well as provide energy-efficient solution by integrating the concept of clustering and prediction techniques. This paper presents Energy-Efficient Constant Gain Kalman Filter based Tracking (EECGKFT) algorithm to optimize the energy usage and to increase the tracking accuracy. There is also a need to collect data from network having a mobile Base Station (BS). Hence, performance of proposed algorithm is analyzed for a static BS and also for mobile BS. The results depict that proposed algorithm performs better compared to the existing algorithms in energy efficiency and prediction accuracy. Analysis of results validates that EECGKFT increases energy efficiency by reducing transmission of unnecessary data in the sensor network environment and also provides good tracking results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.