The construction of hybrid power plants with renewable resources can bring significant economic benefits if it is evaluated economically and technically. The present study uses a novel optimum methodology for designing a combined solar/battery/diesel system in Yarkant, Xinjiang Uyghur Autonomous Region of China. In the desired system, the green energy combined system is designed to reduce the use of diesel generators. The diesel generator has been used in the photovoltaic, diesel, and battery to support green energy resources and batteries, as well as function as a backup generator for critical times whenever the production of green energy resources is low or the load demand is high. The amount of CO2 emitted, the probability of load shortage and the system cost on yearly basis are the major goals in the process of optimization. Here, the single‐objective problem is created by using the ε‐constraint technique to combine the many objectives. An improved Henry gas solubility optimizer handles the problem of optimization. To demonstrate the superiority of the strategy, a comparison is conducted between the simulation outcomes of the offered system, HOMER, and particle swarm optimizer ‐based optimum systems from the literature. The sensitivity of each parameter is also examined using sensitivity analysis.
One of the most appropriate electricity production systems is solid oxide fuel cells (SOFCs), which are important because they are highly efficient, flexible to fuel, and have fewer environmental degradation effects. A new optimum technique has been provided for providing well-organized unknown parameters identification of the solid oxide fuel cell system. The main idea is to achieve the lowest amount of the sum of square error between the model’s output voltage and the empirical voltage datapoints. To get efficient results, the minimum error value has been achieved by designing a new metaheuristic algorithm, called the Developed version of Battle Royale algorithm. The reason for using this version of Battle Royale algorithm is to achieve results with higher accuracy and better convergence. The proposed technique was then applied to a 96-cell SOFC stack under different temperature and pressure values and its achievements were compared with several different latest methods to show the proposed method’s efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.