The elastic moduli of most materials in nature are commonly assumed to be identical (symmetric) under compressive and tensile loading. Here, we report an obviously asymmetric elastic property of alkylthiol-capped gold nanocrystal superlattices (NCSLs) in compression and tension computed from fully atomistic molecular dynamics simulations. Elastic asymmetry exhibits a clear trend of increasing with the increasing strain, and we attribute the strain-dependent elastic asymmetry to the variations of interaction between flexible ligand molecules during elastic deformations. In compression, ligand molecules sterically interact more with each other to continuously stiffen the NCSL, while in tension, they interact less and cause less stiffness. Unlike hybrid molecular materials, we find that the terminal groups of ligand molecules in the superstructure play only a minor role in determining the elastic asymmetry of gold NCSLs. In addition, the elastic asymmetry is observed to be essentially independent of ligand length and core size. These findings are expected to deepen our understanding of underlying asymmetric elastic properties of NCSL materials and may find technological applications in device technologies.
In the current study, molecular dynamics (MD) simulations were performed to study the pressure dependence of the structural and mechanical properties of single-crystal tungsten. The results show that single-crystal tungsten possesses noteworthy high-pressure stability and exhibits linear lattice contraction with increasing external pressure. Consistent with the results of the performed experiments, the predicted elastic moduli, including Young’s modulus, shear modulus, and bulk modulus, as well as Poisson’s ratio and Pugh’s modulus ratio, show a clear increasing trend with the increase in pressure. Under uniaxial tensile loading, the single-crystal tungsten at high pressures experiences a phase transition from BCC to FCC and other disordered structures, which results in a stripe-like morphology in the tungsten crystal. These results are expected to deepen our understanding of the high-pressure structural and mechanical behaviors of tungsten materials.
Molecular dynamics simulations are performed to study the mechanical properties and deformation mechanisms of a heterogeneous fcc/bcc Cu/Ta nanolayered composite under uniaxial tension and compression. The results show that the stress-strain curves exhibit two main yield points in tension while only one yield point during compression, and the deformation primarily experiences three stages. The first stage is linearly elastic at small strains, followed by the nucleation and propagation of dislocations and stacking faults in the Cu layers, and eventually the Ta layers yield to plastic deformation. The yield of the specimen is mainly determined by the dislocation evolution in the hard phase (i.e. Ta layers), which leads to a sharp drop in the stress-strain curve. We show that the heterogeneous nanolayered composite exhibits a good deformation compatibility during compression but an obvious deformation incompatibility between Cu and Ta layers in tension. The temperature effect is also systematically investigated. It is revealed that the yield of the specimen at higher temperature depends only on the dislocation evolution in the thick Ta layers, and the yield strengths in tension and compression both decrease with the increasing temperature. In particular, our computations show that high temperature can significantly suppress the dislocation activities in the Cu layers during deformation, which results in a lower dislocation density of the Cu layers compared with that of the Ta layers and thus causing an incompatible fashion among the constituent layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.