Reseda odorata L. has long been used in traditional Asian medicine for the treatment of diseases associated with oxidative injury and acute inflammation, such as endotoxemia, acute lung injury, acute myocardial infarction and hepatitis. Luteolin, the main component of Reseda odorata L., which is also widely found in many natural herbs and vege tables, has been shown to induce heme oxygenase-1 (HO-1) expression to exert anti-inflammatory and antioxidant effects. In this study, we aimed to examine the effects of luteolin on mice with severe acute pancreatitis (SAP), and to explore the underlying mechanisms. Cerulein and lipopolysaccharide were used to induce SAP in male Institute of Cancer Research (ICR) mice in the SAP group. The SAP group was divided into 4 subgroups, as follows: the vehicle, luteolin, zinc protoporphyrin (ZnPP) only, and luteolin (Lut) + ZnPP (luteolin plus zinc protoporphyrin treatment) groups. The wet/dry weight ratios, hematoxylin and eosin staining and pathological scores of pancreatic tissues were assessed and compared to those of the control mice. Amylase, lipase, nuclear factor-κB (NF-κB) and myeloperoxidase activities, and malondialdehyde, tumor necrosis factor α (TNFα), interleukin (IL)-6, IL-10 and HO-1 levels, as well as the expression of HO-1 were determined in serum and/or pancreatic tissue samples. SAP was successfully induced in male mice compared to normal control mice. The wet/dry weight ratios, pathological scores, and amylase and lipase activity, as well as the levels of TNFα and IL-6 were significantly reduced in the pancreatic tissues of the mice in the Lut group compared with those of the mice in the vehicle group. The Lut group exhibited a significant increase in HO-1 expression in the pancreas and enhanced serum HO-1 and IL-10 levels compared with the vehicle group. The suppression of HO-1 activity in the ZnPP group significantly abolished the protective effects of luteolin. NF-κB expression in the pancreatic tissues from the mice in the Lut + ZnPP group was significantly increased following the suppression of HO-1 activity. On the whole, our findings demonstrate that luteolin protects mice from SAP by inducing HO-1-mediated anti-inflammatory and antioxidant activities, in association with the suppression of the activation of the NF-κB pathway.
Autophagy flux deficiency is closely related to the development of hepatic steatosis. Transcription factor E3 (TFE3) is reported to be a crucial gene that regulates autophagy flux and lysosome function. Therefore, we investigated the role of TFE3 in a cell model of hepatic steatosis. We constructed L02 hepatocyte lines that stably over-expressed or knocked down the expression of TFE3. Subsequently, the effects of TFE3 on hepatocellular lipid metabolism were determined by autophagy flux assay, lipid oil red O (ORO) staining, immunofluorescence staining, and mitochondrial β-oxidation assessment. Finally, we analyzed whether peroxisome proliferative activated receptor gamma coactivator 1α (PGC1α) was the potential target gene of TFE3 in the regulation of hepatic steatosis using a chromatin immunoprecipitation (CHIP) assay and a luciferase reporter system. We found that overexpression of TFE3 markedly alleviated hepatocellular steatosis. On the contrary, downregulation of TFE3 resulted in an aggravated steatosis. The mechanistic studies revealed that the TFE3-manipulated regulatory effects on hepatocellular steatosis are dependent on autophagy-induced lipophagy and PGC1α-mediated fatty acid β-oxidation because blocking these pathways with an Atg5 small interfering RNA (siRNA) or PGC1α siRNA dramatically blunted the TFE3-mediated regulation of steatosis. In conclusion, TFE3 gene provides a novel insight into the treatment of hepatic steatosis and other metabolic disease.
Macrophages, in response to different environmental cues, undergo the classical polarization (M1 macrophages) as well as the alternative polarization (M2 macrophages) that involve the functions of stimulus-specific transcription factors. Kruppel-like factor 4 (KLF4), a member of a subfamily of the zinc-finger class of DNA-binding transcription factors, plays as a critical regulator of macrophage polarization. KLF4 has been reported as a SUMOylated protein. In this study, we showed that SUMOylation of KLF4, is induced by IL-4 treatment in macrophages. IL4-induced KLF4 SUMOylation promotes RAW264.7 cells and bone marrow derived macrophages (BMDMs) to polarize into M2 subset. Thus, we identified an important post-translational modification (PTM), SUMOylation, plays a crucial role in regulating KLF4 activity during IL-4 induced macrophage M2 polarization. SUMOylation of KLF4 can be a potential therapeutic target in the resolution of inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.