The present study was carried out on B356 and B357 alloys using the thermal analysis technique. Metallographic samples prepared from these castings were examined using optical microscopy and FESEM. Results revealed that beryllium causes partial modification of the eutectic Si, similar to that reported for magnesium additions. Addition of 0.8 wt.% Mg reduces the eutectic temperature by ∼10 ∘ C. During solidification of alloys containing high levels of Fe and Mg, but no Sr, formation of a Be-Fe phase was detected at 611 ∘ C, close to that of -Al. The Be-Fe phase precipitates in script-like form at or close to the -Al 5 SiFe platelets. A new reaction, composed of fine particles of Si and -Fe phase, was observed to occur near the end of solidification in high Mg-, high Fe-, and Be-containing alloys. The amount of this reaction decreased with the addition of Sr. Occasionally, Be-containing phase particles were observed as part of the reaction. Addition of Be has a noticeable effect on decreasing the -Al 5 FeSi platelet length; this effect may be enhanced by addition of Sr. Beryllium addition also results in precipitation of the -Al 5 FeSi phase in nodular form, which lowers its harmful effects on the alloy mechanical properties.
Ultrafine grinding is required in most industrial applications of talc. In this work, a planetary mill was used to produce a d50 product of less than 5 μm. The effects of grinding time, media size, mill filling, rotational speed, and media-to-powder ratio, as the main grinding parameters, were initially investigated by the one-variable-at-a-time strategy. In addition, the statistical design method was applied to optimize and correlate the d90 and d50 of the ground product to the media-to-talc percentage and grinding time, being the most significant variables for talc grinding in a planetary mill. The results indicate that the ball size significantly affects the product fineness up to a certain ball size (i. e., 4 mm), after which the product becomes coarser. At the same time, lower mill filling and higher mill rpm yield finer products. The agglomeration of particles under dry conditions is the main constraint to size reduction below certain limits. The maximum size reduction obtained in grinding with the 85 % media-to-powder ratio, 30 % mill filling, and higher rotational speed (300 rpm) during 30 min grinding cycles was 14.6 μm and 4.5 μm for d90 and d50 of the ground product, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.