Generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids are considered in this work. We assume that, in the momentum equation, the diffusion and relaxation terms are described by two distinct power-laws. Moreover, we assume that the momentum equation is perturbed by an extra term, which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. For the associated initial-boundary value problem, we study the existence of weak solutions as well as the large time behavior of the solutions.
The classical Kelvin–Voigt equations for incompressible fluids with non-constant density are investigated in this work. To the associated initial-value problem endowed with zero Dirichlet conditions on the assumed Lipschitz-continuous boundary, we prove the existence of weak solutions: velocity and density. We also prove the existence of a unique pressure. These results are valid for d ∈ {2, 3, 4}. In particular, if d ∈ {2, 3}, the regularity of the velocity and density is improved so that their uniqueness can be shown. In particular, the dependence of the regularity of the solutions on the smoothness of the given data of the problem is established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.