Wool fibres have been modified with nordihydroguaiaretic acid (NDGA) to improve their performance at use. This water insoluble bi-functional phenolic compound has been grafted on wool through a laccase enzyme catalyzed reaction in an aqueous-ethanol mixture. The capacity of laccase to oxidise NDGA in this aqueous-organic medium has been studied electrochemicaly. The increase of CH 2 , CH 3 and aromatic groups signal in the DRIFT spectra, together with SEM images of the enzymatically-modified fabrics confirmed the covalent grafting of NDGA on wool. This one step enzymatic process for grafting of NDGA improved the physical and mechanical properties of wool fabrics such as shrink resistance, crease recovery and tensile strength. Furthermore, the NDGA imparted to the textile material strong antioxidant activity and UV-protection.
A bioprocess for machine washable wool, combining the advantages of both protease and transglutaminase in a simultaneous enzymatic treatment has been developed. This process reduced the felting tendency of woven wool fabrics by 9% at the expense of only 2% weight and tensile strength loss. In contrast to previously described protease-based processes for shrink resistant wool, the anti-felting properties achieved in the simultaneous enzymatic treatment produced insignificant fibre damage, confirmed also by scanning electron images of the fabrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.