Deep venous thrombosis (DVT) is characterized by formation of blood clot within
This paper focuses on the unsupervised detection of the Higgs boson particle using the most informative features and variables which characterize the "Higgs machine learning challenge 2014" data set. This unsupervised detection goes in this paper analysis through 4 steps: (1) selection of the most informative features from the considered data; (2) definition of the number of clusters based on the elbow criterion. The experimental results showed that the optimal number of clusters that group the considered data in an unsupervised manner corresponds to 2 clusters; (3) proposition of a new approach for hybridization of both hard and fuzzy clustering tuned with Ant Lion Optimization (ALO); (4) comparison with some existing metaheuristic optimizations such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). By employing a multi-angle analysis based on the cluster validation indices, the confusion matrix, the efficiencies and purities rates, the average cost variation, the computational time and the Sammon mapping visualization, the results highlight the effectiveness of the improved Gustafson-Kessel algorithm optimized with ALO (ALOGK) to validate the proposed approach. Even if the paper gives a complete clustering analysis, its novel contribution concerns only the Steps (1) and (3) considered above. The first contribution lies in the method used for Step (1) to select the most informative features and variables. We used the t-Statistic technique to rank them. Afterwards, a feature mapping is applied using Self-Organizing Map (SOM) to identify the level of correlation between them. Then, Particle Swarm Optimization (PSO), a metaheuristic optimization technique, is used to reduce the data set dimension. The second contribution of this work concern the third step, where each one of the clustering algorithms as K-means (KM), Global K-means (GlobalKM), Partitioning Around Medoids (PAM), Fuzzy C-means (FCM),
Due to advanced sensor technology, satellites and unmanned aerial vehicles (UAV) are producing a huge amount of data allowing advancement in all different kinds of earth observation applications. Thanks to this source of information, and driven by climate change concerns, renewable energy assessment became an increasing necessity among researchers and companies. Solar power, going from household rooftops to utility-scale farms, is reshaping the energy markets around the globe. However, the automatic identification of photovoltaic (PV) panels and solar farms' status is still an open question that, if answered properly, will help gauge solar power development and fulfill energy demands. Recently deep learning (DL) methods proved to be suitable to deal with remotely sensed data, hence allowing many opportunities to push further research regarding solar energy assessment. The coordination between the availability of remotely sensed data and the computer vision capabilities of deep learning has enabled researchers to provide possible solutions to the global mapping of solar farms and residential photovoltaic panels. However, the scores obtained by previous studies are questionable when it comes to dealing with the scarcity of photovoltaic systems. In this paper, we closely highlight and investigate the potential of remote sensing-driven DL approaches to cope with solar energy assessment. Given that many works have been recently released addressing such a challenge, reviewing and discussing them, it is highly motivated to keep its sustainable progress in future contributions. Then, we present a quick study highlighting how semantic segmentation models can be biased and yield significantly higher scores when inference is not sufficient. We provide a simulation of a leading semantic segmentation architecture U-Net and achieve performance scores as high as 99.78%. Nevertheless, further improvements should be made to increase the model's capability to achieve real photovoltaic units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.