BackgroundThe cyclic nucleotide-gated ion channel (CNGC) family affects the uptake of cations, growth, pathogen defence, and thermotolerance in plants. However, the systematic identification, origin and function of this gene family has not been performed in Brassica oleracea, an important vegetable crop and genomic model organism.ResultsIn present study, we identified 26 CNGC genes in B. oleracea genome, which are non-randomly localized on eight chromosomes, and classified into four major (I-IV) and two sub-groups (i.e., IV-a and IV-b). The BoCNGC family is asymmetrically fractioned into the following three sub-genomes: least fractionated (14 genes), most fractionated-I (10), and most fractionated-II (2). The syntenic map of BoCNGC genes exhibited strong relationships with the model Arabidopsis thaliana and B. rapa CNGC genes and provided markers for defining the regions of conserved synteny among the three genomes. Both whole-genome triplication along with segmental and tandem duplications contributed to the expansion of this gene family. We predicted the characteristics of BoCNGCs regarding exon-intron organisations, motif compositions and post-translational modifications, which diversified their structures and functions. Using orthologous Arabidopsis CNGCs as a reference, we found that most CNGCs were associated with various protein–protein interaction networks involving CNGCs and other signalling and stress related proteins. We revealed that five microRNAs (i.e., bol-miR5021, bol-miR838d, bol-miR414b, bol-miR4234, and bol-miR_new2) have target sites in nine BoCNGC genes. The BoCNGC genes were differentially expressed in seven B. oleracea tissues including leaf, stem, callus, silique, bud, root and flower. The transcript abundance levels quantified by qRT-PCR assays revealed that BoCNGC genes from phylogenetic Groups I and IV were particularly sensitive to cold stress and infections with bacterial pathogen Xanthomonas campestris pv. campestris, suggesting their importance in abiotic and biotic stress responses.ConclusionOur comprehensive genome-wide analysis represents a rich data resource for studying new plant gene families. Our data may also be useful for breeding new B. oleracea cultivars with improved productivity, quality, and stress resistance.Electronic supplementary materialThe online version of this article (10.1186/s12864-017-4244-y) contains supplementary material, which is available to authorized users.
The rise of antimicrobial resistance (AMR) in bacterial pathogens such as Klebsiella pneumoniae (Kp) is a pressing public health and economic concern. The ‘One-Health’ framework recognizes that effective management of AMR requires surveillance in agricultural as well as clinical settings, particularly in low-resource regions such as Pakistan. Here, we use whole-genome sequencing to characterise 49 isolates of Klebisella spp. (including 43 Kp) and 2 presumptive Providencia rettgeri isolates recovered from dairy farms located near 3 cities in Pakistan—Quetta (n = 29), Faisalabad (n = 19), and Sargodha (n = 3). The 43 Kp isolates corresponded to 38 sequence types (STs), and 35 of these STs were only observed once. This high diversity indicates frequent admixture and limited clonal spread on local scales. Of the 49 Klebsiella spp. isolates, 41 (84%) did not contain any clinically relevant antimicrobial resistance genes (ARGs), and we did not detect any ARGs predicted to encode resistance to carbapenems or colistin. However, four Kp lineages contained multiple ARGs: ST11 (n = 2), ST1391-1LV (n = 1), ST995 (n = 1) and ST985 (n = 1). STs 11, 1391-1LV and 995 shared a core set of five ARGs, including blaCTX-M-15, harboured on different AMR plasmids. ST985 carried a different set of 16 resistance genes, including blaCTX-M-55. The two presumptive P. rettgeri isolates also contained multiple ARGs. Finally, the four most common plasmids which did not harbour ARGs in our dataset were non-randomly distributed between regions, suggesting that local expansion of the plasmids occurs independently of the host bacterial lineage. Evidence regarding how dairy farms contribute to the emergence and spread of AMR in Pakistan is valuable for public authorities and organizations responsible for health, agriculture and the environment, as well as for industrial development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.