The combination of DNA bisulfite treatment with high-throughput sequencing technologies has enabled investigation of genome-wide DNA methylation at near base pair level resolution, far beyond that of the kilobase-long canonical CpG islands that initially revealed the biological relevance of this covalent DNA modification. The latest high-resolution studies have revealed a role for very punctual DNA methylation in chromatin plasticity, gene regulation and splicing. Here, we aim to outline the major biological consequences of DNA methylation recently discovered. We also discuss the necessity of tuning DNA methylation resolution into an adequate scale to ease the integration of the methylome information with other chromatin features and transcription events such as gene expression, nucleosome positioning, transcription factors binding dynamic, gene splicing and genomic imprinting. Finally, our review sheds light on DNA methylation heterogeneity in cell population and the different approaches used for its assessment, including the contribution of single cell DNA analysis technology.
BackgroundGenetic variation in the IL28B gene has been strongly associated with treatment outcomes, spontaneous clearance and progression of the hepatitis C virus infection (HCV). The aim of the present study was to investigate the role of polymorphisms at this locus with progression and outcome of HCV infection in a Moroccan population.MethodsWe analyzed a cohort of 438 individuals among them 232 patients with persistent HCV infection, of whom 115 patients had mild chronic hepatitis and 117 had advanced liver disease (cirrhosis and hepatocellular carcinoma), 68 individuals who had naturally cleared HCV and 138 healthy subjects. The IL28B SNPs rs12979860 and rs8099917 were genotyped using a TaqMan 5′ allelic discrimination assay.ResultsThe protective rs12979860-C and rs8099917-T alleles were more common in subjects with spontaneous clearance (77.9% vs 55.2%; p = 0.00001 and 95.6% vs 83.2%; p = 0.0025, respectively). Individuals with clearance were 4.69 (95% CI, 1.99–11.07) times more likely to have the C/C genotype for rs12979860 polymorphism (p = 0.0017) and 3.55 (95% CI, 0.19–66.89) times more likely to have the T/T genotype at rs8099917. Patients with advanced liver disease carried the rs12979860-T/T genotype more frequently than patients with mild chronic hepatitis C (OR = 1.89; 95% CI, 0.99–3.61; p = 0.0532) and this risk was even more pronounced when we compared them with healthy controls (OR = 4.27; 95% CI, 2.08–8.76; p = 0.0005). The rs8099917-G allele was also associated with advanced liver disease (OR = 2.34; 95% CI, 1.40–3.93; p = 0.0100).ConclusionsIn the Moroccan population, polymorphisms near the IL28B gene play a role both in spontaneous clearance and progression of HCV infection.
The cytidine deaminase apolipoprotein B mRNA editing catalytic subunit-3 (APOBEC3) induces G-to-A hypermutation in hepatitis B virus (HBV) genomes and operates as part of the innate antiviral immune system. We investigated the associations between the presence of APOBEC3 variants and HBV carriage in a case-control study in the Moroccan population. A polymorphic deletion affecting the APOBEC3B gene and the H186R variant of APOBEC3G were genotyped in 179 HBV chronic carriers and 216 healthy control subjects. In addition, to assess the overall impact of APOBEC3 deaminases on circulating HBV, we looked for hyperedited forms of the viral genome using the 3DPCR technique and analysed editing context. Data analysis showed that there was no significant difference in the frequencies of deleted APOBEC3B alleles (P = 0.261) or genotypes (P = 0.333) between patients with chronic hepatitis B and control subjects. By contrast, subjects bearing deleted genotype had a faster progression of liver disease than those with the insertion genotype (adjusted OR, 3.72; 95% CI, 0.38-36.12). The analysis of the APOBEC3G H186R polymorphism revealed that R/R genotype frequencies were not significantly different in HBV infected patients and in healthy subjects. 3DPCR was positive in 26 samples (14%) among 179. Amplified viral segments displayed monomorphic G>A transitions highly reminiscent of APOBEC3G activity. Most intriguingly, hemi/homozygous carriers of the APOBEC3B deletion had significantly lower virus loads than patients with the wild type (median 539 vs. 2213 IU/mL, P = 0.0023). This result suggests that genetic variations in APOBEC3 cytidine deaminases do not predispose to chronicity but may modulate the course of persistent HBV infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.