Semi‐refined carrageenan (SRC) film plasticized with glycerol and incorporated with α‐tocopherol was prepared for food packaging application. Functional characterization, thermal stability, and microstructure of SRC‐based films were analyzed. The effects of antioxidant α‐tocopherol from SRC‐based film were studied based on thiobarbituric acid‐reactive substance assay, metmyoglobin assay, and pH value in food model (meat patties) for 12 days of storage. The development of lipid oxidation was delayed in the meat patties wrapped with antioxidant films during the storage with the final value of 0.68–0.37 mg malondialdehyde/kg sample. A less than 50% brown color development (metmyoglobin) of the meat patties wrapped with antioxidant film was observed in the first nine days of storage. Hence, the incorporation of α‐tocopherol into the SRC‐based film could be an alternative way to prolong the shelf life of food product, reducing the use of synthetic preservative directly into food product. Practical applications Recent strategy on the development of biodegradable film for food packaging is important as an alternative to the petrochemical‐derived plastic that is harmful to the environment. SRC is one of the potential biopolymers that has the ability to form a strong gel and provides efficient barrier against gas, lipids, and oils, and addition of plasticizer glycerol into SRC enhanced mechanical and barrier properties of the films. The present study showed the potential of α‐tocopherol within the SRC film plasticized with glycerol as active packaging on the film characteristics and increased the shelf life of meat patties. Hence, the active packaging film developed is not only contributes to reduce plastic waste discharged to environment but can be a potential substitute of synthetic preservative in food.
Semirefined carrageenan (SRC) plasticized with glycerol (G) and incorporated with antioxidants of 0.4% (v/v) of α-tocopherol and Persicaria minor (PM) extract was successfully developed. The objective of this study is to analyze the antioxidant effect of active packaging films from semirefined carrageenan incorporated with α-tocopherol and Persicaria minor on meat patties. Total phenolic content and antioxidant activity of α-tocopherol and PM extract were measured. The effects of α-tocopherol and PM extract incorporated with SRC-based films on meat patties were evaluated using thiobarbituric acid reactive substance (TBARS) assay, metmyoglobin assay, and pH value for 14 days of storage. The films with 0.4% (v/v) of α-tocopherol and PM extract exhibited a lower lipid oxidation in meat patties compared with that of control (SRC film only, p < 0.05). Also, a brown color development of the meat patties of less than 50% was observed at the end of the 14-day storage. Meanwhile, the pH values for all samples decreased throughout the storage period with the SRC+G+α-tocopherol film showed the highest pH value. Hence, the formulation of SRC film with α-tocopherol or PM extract could be used as an alternative packaging for extending the shelf life of food product with high fat content.
Biodegradable films made from biopolymer materials have the potential to replace conventional plastics, which can reduce waste disposal problems. This study aims to explore the potential of different seaweed derivate films consisting of 2% (w/w) of kappaphycus alverezi (KA), kappa carrageenan (KC), refined carrageenan (RC) and semi-refined carrageenan (SRC) as bio-based materials with 0.9% (w/w) glycerol (G), and reinforced with different concentrations of cellulose nanofibers (CNFs) derived from palm waste. A characterization of the glycerol-plasticized seaweed derivatives containing 0, 5, 10, and 15% (v/w) cellulose nanofiber is carried out. The CNFs were studied based on their mechanical, physical and thermal properties including mechanical properties, thickness, moisture content, opacity, water solubility, water vapor permeability and thermal stability. The hydrogen bonding was determined using the DFT calculation generated by Gauss view software version 9.6. The KA + G + 10%CNF film exhibited a surface with slight cracks, roughness, and larger lumps and dents, resulting in inferior mechanical properties (18.50 Mpa), making it unsuitable for biofilm production. The KC + G + 10%CNF film exhibited mechanical properties 24.97 Mpa and water vapor permeability of 1.42311 × 10−11 g s−1 m−1 Pa−1. The RC/G/10%CNF film displayed the highest TS (48.23 MPa) and water vapor permeability (1.4168 × 10−11 g s−1 m−1 Pa−1), but it also had higher solubility in water (66%). In contrast, the SRC + G + 10%CNF film demonstrated excellent mechanical properties (45.98 MPa), low water solubility (42.59%), low water vapor permeability (1.3719 × 10−11 g s−1 m−1 Pa−1), and a high decomposition temperature (250.62 °C) compared to KA, KC and RC. These attributes develop films suitable for various applications, including food packaging with enhanced properties and stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.