The aim of our study is to establish, for convex functions on an interval, a midpoint version of the fractional HHF type inequality. The corresponding fractional integral has a symmetric weight function composed with an increasing function as integral kernel. We also consider a midpoint identity and establish some related inequalities based on this identity. Some special cases can be considered from our main results. These results confirm the generality of our attempt.
In this paper, we find the solution of the fractional-order Kaup–Kupershmidt (KK) equation by implementing the natural decomposition method with the aid of two different fractional derivatives, namely the Atangana–Baleanu derivative in Caputo manner (ABC) and Caputo–Fabrizio (CF). When investigating capillary gravity waves and nonlinear dispersive waves, the KK equation is extremely important. To demonstrate the accuracy and efficiency of the proposed technique, we study the nonlinear fractional KK equation in three distinct cases. The results are given in the form of a series, which converges quickly. The numerical simulations are presented through tables to illustrate the validity of the suggested technique. Numerical simulations in terms of absolute error are performed to ensure that the proposed methodologies are trustworthy and accurate. The resulting solutions are graphically shown to ensure the applicability and validity of the algorithms under consideration. The results that we obtain confirm that the proposed method is the best tool for handling any nonlinear problems arising in science and technology.
A number of mathematical methods have been developed to determine the complex rheological behavior of fluid’s models. Such mathematical models are investigated using statistical, empirical, analytical, and iterative (numerical) methods. Due to this fact, this manuscript proposes an analytical analysis and comparison between Sumudu and Laplace transforms for the prediction of unsteady convective flow of magnetized second grade fluid. The mathematical model, say, unsteady convective flow of magnetized second grade fluid, is based on nonfractional approach consisting of ramped conditions. In order to investigate the heat transfer and velocity field profile, we invoked Sumudu and Laplace transforms for finding the hidden aspects of unsteady convective flow of magnetized second grade fluid. For the sake of the comparative analysis, the graphical illustration is depicted that reflects effective results for the first time in the open literature. In short, the obtained profiles of temperature and velocity fields with Laplace and Sumudu transforms are in good agreement on the basis of numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.