CRISPR and CRISPR-associated (Cas) protein, as components of microbial adaptive immune system, allows biologists to edit genomic DNA in a precise and specific way. CRISPR-Cas systems are classified into two main classes and six types. Cpf1 is a putative type V (class II) CRISPR effector, which can be programmed with a CRISPR RNA to bind and cleave complementary DNA targets. Cpf1 has recently emerged as an alternative for Cas9, due to its distinct features such as the ability to target T-rich motifs, no need for trans-activating crRNA, inducing a staggered double-strand break and potential for both RNA processing and DNA nuclease activity. In this review, we attempt to discuss the evolutionary origins, basic architectures, and molecular mechanisms of Cpf1 family proteins, as well as crRNA designing and delivery strategies. We will also describe the novel Cpf1 variants, which have broadened the versatility and feasibility of this system in genome editing, transcription regulation, epigenetic modulation, and base editing. Finally, we will be reviewing the recent studies on utilization of Cpf1as a molecular tool for genome editing.
BackgroundLong noncoding RNAs (lncRNAs) are involved in different pathogenesis pathways including cancer pathogenesis. The adenoma-carcinoma pathway in colorectal cancer may involve the aberrant and variable gene expression of regulatory RNAs. This study was conducted to analyse the expression and prognosis prediction ability of two natural antisense transcripts, protein kinase C theta antisense RNA 1 (PRKCQ-AS1), and special AT-rich sequence binding protein 1 antisense RNA 1 (SATB1-AS1) in colorectal low-grade adenoma, advanced adenoma, and adenocarcinomas.MethodsIn this study, from two RNA-seq analyses of CCAT1-ko cells and colorectal carcinoma biopsies having diminished and increased levels of CCAT1 transcription, respectively, we nominated two antisense lncRNAs of PRKCQ-AS1 and SATB1-AS1. Samples from colorectal low-grade adenomas, advanced adenomas, adenocarcinomas, and adjacent tissue were subjected to RT-qPCR to determine the expression of PRKCQ-AS1, SATB1-AS1 along with colon cancer-associated transcript 1 (CCAT1) and cMYC. In addition, we used different bioinformatics analyses and webservers (including GEPIA 2, TCGA, and CancerMine) to elucidate the prognosis prediction value, the expression correlation of sense–antisense pair of genes, and the expression profile of these antisense transcripts at the presence or absence of mutations in the driver genes, or the corresponding sense genes.ResultsPRKCQ-AS1 showed a wide range of expression levels in colorectal adenoma, advanced adenoma, and adenocarcinoma. Upregulation of PRKCQ-AS1 was related to a significant decrease in survival of colorectal cancer (CRC) patients. The expression levels of PRKCQ-AS1 and PRKCQ were strong and significantly concordant in normal and cancerous colorectal tissues. While SATB1-AS1 showed a wide range of expression in colorectal adenoma, advanced adenoma, and adenocarcinoma as well, its expression was not related to a decrease in survival of CRC patients. The expression levels of SATB1-AS1 and SATB1 (the sense gene) were not strong in normal colorectal tissues. In addition, where SATB1 gene was mutated, the expression of SATB1-AS1 was significantly downregulated.ConclusionsWe found the expression of PRKCQ-AS1 and SATB1-AS1 at a given stage of CRC very variable, and not all biopsy samples showed the increased expression of these antisense transcripts. PRKCQ-AS1 in contrast to SATB1-AS1 showed a significant prognostic value. Since a significantly concordant expression was observed for SATB1-AS1 and SATB1 in only cancerous, and for PRKCQ-AS1 and PRKCQ in both normal and cancerous colorectal tissues, it can be concluded that common mechanisms may regulate the expression of these sense and antisense genes.
An in vitro cell suspension culture of Echium italicum was established and assayed for the production of shikonin and alkannin derivatives. Callus tissues were induced from cotyledon explants of the plant incubated onto the solidified B5 medium. A two-liquid-phase system suspension culture was then established to elicit pigments of shikonin and alkannin derivatives using liquid paraffin. The presence of liquid paraffin efficiently induced production of pigments in cultured cells. The production and/ or accumulation of these compounds in the E. italicum cells was examined using fluorescence microscopy as the naphthoquinone molecules display autofluorescent properties. Phytochemical analysis of the n-hexane extract of the medium was also carried out using preparative HPLC. The chemical structure of shikonin and alkannin derivatives were characterized by UV, 1H-NMR, and 13C-NMR techniques. Based on our findings, this bioprocess engineering approach resulted in induction of shikonin and alkannin derivatives, whereupon it may be recruited for production of these important secondary metabolites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.