In this article, we propose a general design procedure to develop unequal split Bagley power dividers (BPDs). Based on the mathematical approach carried out in the insight of simple circuit and transmission line theories, exact design equations for 3-way and 5-way BPDs are derived. Utilising the developed equations leads to power dividers with the ability of offering different output power ratios through a suitable choice of the characteristic impedances of the interconnecting transmission lines. For verification purposes, a 1:2:1 3-way, 1:2:1:2:1 5-way and 1:3:1:3:1 5-way BPDs are designed and fabricated. The experimental and full-wave simulation results prove the validity of the designed unequal split BPDs.
We propose an ultra-wideband (UWB) antipodal Vivaldi antenna (AVA) with high-Qstopband characteristics based on compact electromagnetic bandgap (EBG) structures. First, an AVA is designed and optimized to operate over an UWB spectrum. Then, two pairs of EBG cells are introduced along the antenna feed line to suppress the frequency components at 3.6–3.9 and 5.6–5.8 GHz (i.e., WiMAX and ISM bands, resp.). Simulated and measured results show a voltage standing wave ratio (VSWR) below 2 for the entire 3.1–10.6 GHz band with high attenuation at the two selected subbands. This simple yet effective approach eliminates the need to deform the antenna radiators with slots/parasitic elements or comprise multilayer substrates. Furthermore, the flexibility it offers in terms of controlling both the number and locations of the band-reject frequencies is advantageous for antennas with nonuniform flares as in the AVA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.