Abstract. The forward osmosis (FO) process has been considered to be a viable option for water desalination in comparison to the traditional processes like reverse
osmosis, regarding energy consumption and economical operation. In this
work, a polyacrylonitrile (PAN) nanofiber support layer was prepared using the electrospinning process as a modern method. Then, an interfacial
polymerization reaction between m-phenylenediamine (MPD) and trimesoyl chloride (TMC) was carried out to generate a polyamide selective thin-film composite (TFC) membrane on the support layer. The TFC membrane was tested
in FO mode (feed solution facing the active layer) using the standard
methodology and compared to a commercially available cellulose triacetate
membrane (CTA). The synthesized membrane showed a high performance in terms
of water flux (16 Lm −2 h−1) but traded the salt rejection (4 gm−2 h−1) compared with the commercial CTA membrane (water flux = 13 Lm−2 h−1 and salt rejection = 3 gm−2 h−1) at
no applied pressure and room temperature. Scanning electron microscopy
(SEM), contact angle, mechanical properties, porosity, and performance
characterizations were conducted to examine the membrane.
The performance of a solar photocatalysis reactor as pretreatment for the removal of total organic carbon (TOC) and turbidity from municipal wastewater was achieved by implementing an integrated system as tertiary treatment. The process consisted of ultraviolet (UV) sunlight, UV sunlight/H2O2, and UV sunlight/TiO2 nanocatalysts as pretreatment steps to prevent ultrafiltration (UF) membrane fouling. The characterization of TiO2 was conducted with X-ray diffraction spectroscopy, Fourier-transform infrared spectroscopy, scanning electron microscopy , and Brunauer–Emmett–Teller surface area analysis. This study investigated the effect of time and solar radiation using UV, UV/H2O2, and UV/TiO2 to remove TOC and turbidity. The transmembrane pressure improvement was studied using a UF membrane system to pretreat wastewater with different UV doses of sunlight for 5 h and UV/H2O2 and UV/TiO2. The results showed that the highest removal efficiency of the turbidity and TOC reached 95% and 31%, respectively. The highest removal efficiency of the turbidity reached 40, 75, and 95% using UV, UV/H2O2, and UV/TiO2, respectively, while the optimal removal efficiency of TOC reached 20%, 30%, and 50%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.