The enormity of the amount of learning materials in e-learning has led to the difficulty of locating suitable learning materials for a particular learning topic, creating the need for recommendation tools within a learning context. In this paper, we aim to address this need by proposing a novel e-learning recommender system framework that is based on two conceptual foundations-peer learning and social learning theories that encourage students to cooperate and learn among themselves. Our proposed framework works on the idea of recommending learning materials with a similar content and indicating the quality of learning materials based on good learners' ratings. A comprehensive set of experiments were conducted to measure the system accuracy and its impact on learner's performance. The obtained results show that the proposed e-learning recommender system has a significant improvement in the post-test of about 12.16% with the effect size of 0.6 and 13.11% with the effect size of 0.53 when compared to the e-learning with a content-based recommender system and the e-learning without a recommender system, respectively. Furthermore, the proposed recommender system performed better in terms of having a small rating deviation and a higher precision as compared to e-learning with a contentbased recommender system.
A recommender system is a piece of software that helps users to identify the most interesting and relevant learning items from a large number of items. Recommender systems may be based on collaborative filtering (by user ratings), content-based filtering (by keywords), and hybrid filtering (by both collaborative and content-based filtering). Recommender systems have been a useful tool to recommend items in many online systems, including e-learning. However, not much research has been done to measure the learning outcomes of the learners when they use e-learning with a recommender system. Instead, most of the researchers were focusing on the accuracy of the recommender system in predicting the recommendation rather than the knowledge gain by the learners. This research aims to compare the learning outcomes of the learners when they use several types of e-learning recommender systems. Based on the comparison made, we propose a new e-learning recommender system framework that uses content-based filtering and good learners' ratings to recommend learning materials, and in turn is able to increase the student's performance. The results show that students who used the proposed e-learning recommender system produced a significantly better result in the post-test. The results also show that the proposed e-learning recommender system has the highest percentage of score gain from pre-test to post-test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.