SignificanceIdentifying and explaining regional differences in tropical forest dynamics, structure, diversity, and composition are critical for anticipating region-specific responses to global environmental change. Floristic classifications are of fundamental importance for these efforts. Here we provide a global tropical forest classification that is explicitly based on community evolutionary similarity, resulting in identification of five major tropical forest regions and their relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. African and American forests are grouped, reflecting their former western Gondwanan connection, while Indo-Pacific forests range from eastern Africa and Madagascar to Australia and the Pacific. The connection between northern-hemisphere Asian and American forests is confirmed, while Dry forests are identified as a single tropical biome.
Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs’ application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
Hydrogen peroxide (H2O2) is defined as a reactive oxygen species (ROS), able to cause damage to a variety of cellular structures. On the other hand, recent work has demonstrated that H2O2 can also act as a potent signaling molecule that mediates various physiological and biochemical processes in plants. This study was carried out to investigate the effects of H2O2 on the growth, mineral nutrient accumulation, as well as the biologic and chemical properties of Ficus deltoidea var. deltoidea. F. deltoidea plants were spray-treated with 0- (control), 8-, 16-, 30- and 60-mM H2O2 under field conditions. Plant height, leaf area, chlorophyll content, net photosynthetic rate, stomatal conductance and quantum yield of the F. deltoidea plants significantly increased after treatment with 16 and 30-mM H2O2. The results indicate that 60-mM H2O2 increased the accumulation of arsenic, iron and sodium content in the leaves of F. deltoidea. On the other hand, 8-mM H2O2 significantly enhanced the accumulation of arsenic, iron, calcium and potassium content in the syconium of F. deltoidea plants. In addition, H2O2 treatment did not produce any significant effects on antimony and magnesium accumulation in the leaves or the syconium of F. deltoidea plants. The results show that the F. deltoidea plant has strong antidiabetic properties and its α-glucosidase activity increased in treated plants compared to standard acarbose. Hydrogen peroxide, particularly in concentrations of 16 and 30 mM, increased the antioxidant activity, total phenolic and flavonoid content and the vitexin and isovitexin content. There was a positive correlation between antioxidant activity with total phenol and total flavonoid content in H2O2-treated plants. The quantitative analysis by HPTLC indicates that the amount of vitexin and isovitexin increased with the higher concentrations of H2O2. From this study, it can be concluded that spraying 16 and 30-mM H2O2 once a week enhances growth, mineral accumulation and stimulates bioactive compounds of the F. deltoidea plants.
This study was carried out to investigate the regulatory effects of hydrogen peroxide (H2O2) on the growth, photosynthesis, biochemical properties, leaf anatomy and Rubisco gene expression in Ficus deltoidea var. deltoidea, a slow-growing medicinal herb. Results showed that 20-mM H2O2 treatment increased plant height, net photosynthetic rate, stomatal conductance and chlorophyll content of the plants by 10%, 20%, 127% and 57%, respectively, than a control plant. In addition, 20 mM H2O2 treatment significantly increased the carotene, total phenolic, total flavonoid and total sugar content than the control plant. The applications of H2O2 did not produce any negative effects on the leaf area, chlorophyll fluorescence, quantum yield or antioxidant activity of F. deltoidea plants. In regard to leaf anatomy, it was observed that the applications of H2O2 at 15 mM significantly improved cellular structure, leaf veins and promoted cell proliferation. Treated leaves developed a palisade layer, thickened leaf surface, the widest stomatal openings and a well-developed vascular bundle when compared to the control plant. Employing reverse transcription polymerase chain reaction (RT-PCR), the study showed that the Rubisco gene was expressed at a higher level in 15 mM H2O2 treatments than in 20 mM H2O2 treatments. The results indicate that H2O2 increased the Rubisco expression ratio up to 16-fold when compared to the untreated plants. It was conclusive that spraying 15 mM and 20 mM H2O2 twice a week enhanced growth, photosynthesis, the stomatal aperture, improved leaf anatomy and helped to regulate the expression of the Rubisco gene.
Aluminium (Al) hyper-accumulation is a common trait expressed by tropical woody plants growing on acidic soils. Studies on Al accumulators have suggested that Al addition may enhance plant growth rates, but the functional significance of this trait and the mechanistic basis of the growth response are uncertain. This study aimed to test the hypothesis that differential growth responses to Al among populations of an Al accumulator species are associated with variation in biomass allocation and nutrient uptake. We conducted two experiments to test differential responses to the presence of Al in the growth medium for seedlings of the Al accumulator shrub Melastoma malabathricum collected from 18 populations across Peninsular Malaysia. Total dry mass and relative growth rate of dry mass (RGR) were significantly greater for seedlings that had received Al in the growth medium than for control plants that did not receive Al, but growth declined in response to 5.0 mM Al addition. The increase in growth rate in response to Al addition was greater for a fast-growing than a slow-growing population. The increase in growth rate in response to Al addition occurred despite a reduction in dry mass allocation to leaves, at the expense of higher allocation to roots and stems, for plants grown with Al. Foliar concentrations of P, K, Mg and Ca increased in response to Al addition and the first axis of a PCA summarising foliar nutrient concentrations among populations was correlated positively with seedling relative growth rates. Some populations of the Al hyper-accumulator M. malabathricum express a physiological response to Al addition which leads to a stimulation of growth up to an optimum value of Al in the growth medium, beyond which growth declines. This was associated with enhanced nutrient concentrations in leaves, which suggests that Al accumulation functions to optimise elemental stoichiometry and growth rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.