Abstract. This research intends to characterize the South Atlantic Anomaly (SAA) by applying the power spectrum analysis approach. The motivation to study the SAA region is due to its nature. A comparison was made between the stations in the SAA region and outside the SAA region during the geomagnetic storm occurrence (active period) and the normal period where no geomagnetic storm occurred. The horizontal component of the data of the Earth's magnetic field for the occurrence of the active period was taken on 11 March 2011 while for the normal period it was taken on 3 February 2011. The data sample rate used is 1 min. The outcome of the research revealed that the SAA region had a tendency to be persistent during both periods. It can be said that the region experiences these characteristics because of the Earth's magnetic field strength. Through the research, it is found that as the Earth's magnetic field increases, it is likely to show an antipersistent value. This is found in the high-latitude region. The lower the Earth's magnetic field, the more it shows the persistent value as in the middle latitude region. In the region where the Earth's magnetic field is very low like the SAA region it shows a tendency to be persistent.
The geomagnetic field is generated inside its molten iron core as a result of a mixture of the electrical forces within the core, daily Earth's rotation, and its thermal movement. The purpose of the study is to build the model of the near equatorial magnetic field, studying the effect of South Atlantic Anomaly on the near equatorial satellites and analyzing the characterization of the geomagnetic field. The building of the model is important since it can provide a better result in a small area compare to a large area. In this research, 6 stations located near the equatorial region were selected. The stations chosen can be used in designing the model using spherical cap harmonic analysis. The result for this research is still preliminary stage. The model constructed will be tested, verified and validated. The wellverified model will be capable to predict the characteristic of the geomagnetic field and can be used to study the effect of South Atlantic anomaly on the near equatorial satellites.
Abstract. The South Atlantic Anomaly (SAA) is known for its weak Earth’s magnetic field strength. In this research, power spectrum analysis method was applied on the Horizontal intensity of the Earth’s magnetic field with data sample rate used at 1 min. Four active periods on 18 March 2012, 10 March 2012, 25 April 2012, and 30 June 2013 which represent the occurrence of geomagnetic storms and 4 normal periods on 25 March 2012, 21 March 2012, 4 April 2012, and 15 June 2013 which indicate no geomagnetic storm event were examined. Research was conducted by analyzing the SAA region where comparisons were made between the middle latitude region and the high latitude region. The results indicate that the SAA region tends to be persistent, and this may be due to the ring current. The middle latitude region experienced a mixture of persistent and antipersistent characteristics and this may be due to the transportation of plasma and seasonal weather variations. The high latitude region tends to be antipersistent. This may indicate that the high latitude region is influenced by geomagnetic storms and the aurora.
Abstract. This research intends to characterize the South Atlantic Anomaly (SAA) by applying power spectrum analysis approach. From the approach, the Hurst exponent can be determined. The motivation to study the SAA region is due to its nature. A comparison was made between the stations in the SAA region and outside the SAA region during the geomagnetic storm occurrence (active period) and normal period where no geomagnetic storm occurred. The data for the occurrence of the active period was taken on 11 March 2011 while for normal period on 3 February 2011. The outcomes of the research revealed that the SAA region had a tendency to be persistent during active period and normal periods. It can be said, it experiences this characteristic because of the Earth’s magnetic field strength. Through the research, it is found that as the Earth magnetic field increases, it is likely to show an antipersistent value. This is found in the high latitude region. The lower the Earth magnetic field, the more it shows the persistent value as in the middle latitude region. In the region where the Earth magnetic field is very low like the SAA region it shows a tendency to be persistent.
This research intends to characterize the South Atlantic Anomaly (SAA) by applying the power spectrum analysis approach. The motivation to study the SAA region is due to its nature. A comparison was made between the stations in the SAA region and outside the SAA region during the geomagnetic storm occurrence (active period) and the normal period where no geomagnetic storm occurred. The horizontal component of the data of the Earth's magnetic field for the occurrence of the active period was taken on 11 March 2011 while for the normal period it was taken on 3 February 2011. The data sample rate used is 1 min. The outcome of the research revealed that the SAA region had a tendency to be persistent during both periods. It can be said that the region experiences these characteristics because of the Earth's magnetic field strength. Through the research, it is found that as the Earth's magnetic field increases, it is likely to show an antipersistent value. This is found in the high-latitude region. The lower the Earth's magnetic field, the more it shows the persistent value as in the middle latitude region. In the region where the Earth's magnetic field is very low like the SAA region it shows a tendency to be persistent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.