ABSTRACT:This paper presents a novel method of unmanned aerial vehicle image processing using photogrammetric technique. The study area consist different slope class which involves undulating area around the Skudai area, Malaysia. All photogrammetric methods were applied in this study including selection of test area, flight planning, camera calibration and image processing orientation. A new ground control point configurations is introduced in this study as a generic approach in unmanned aerial vehicle photogrammetric block. These configurations are used to determine the best photogrammetric results based on number of ground control points in the photogrammetric block during image processing. The objective of this study is to determine the best configuration for photogrammetric block in order to produce the best photogrammetric products. Photogrammetric image processing involves two main orientations which are known as interior orientation and exterior orientation. Interior orientation involves the parameters of camera in order to calibrate the image in the same position as during the image acquisition. Exterior orientation involves the measurement of tie points to tie up all images in the strips until photogrammetric block. In this study, six ground control point configurations were tested to determine the best photogrammetric results. In this study, two main photogrammetric results were produced namely digital orthophoto and digital elevation model. The verification results show that all configurations recorded coefficient percentage of more than 97 % accuracy for the six configurations. The validation results conclude that ground control point plays an important role in photogrammetric block to acquire the accurate photogrammetric results. In this study eight and nine ground control point configurations are the best configurations among the others. Qualitatively, vector plot error for easting and northing coordinates can be viewed graphically to distinguish the error and direction for all configurations which has been proposed in this study.
Abstract. Unmanned Aerial Vehicles (UAV) technology has evolved dramatically in the 21 st century. It is used by both military and general public for recreational purposes and mapping
Unmanned Aerial Vehicles (UAVs) can be used for close range mapping. In engineering survey works, the conventional survey involves huge cost, labour, and time. Low-cost UAVs are very practical in providing reliable information for many applications such as road design. UAVs can provide the output that meets the accuracy of engineering surveys and policies, especially for small-scale mapping. UAVs are also a competitive technology which is stable and rapidly developing, same as other surveying technologies. This study investigates the performance of multirotor UAV for road design. This study involves four phases which consist of preliminary study, data collection, data processing, and analysis. This study focuses on the UAV as a tool to capture data of the ground from a certain altitude. The analysis includes UAV flight planning, image acquisition, and accuracy assessment of road design. It can be concluded that UAVs can be used to provide data for road design with reliable accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.