Metabolic syndrome is a constellation of five risk factors comprising central obesity, hyperglycaemia, dyslipidaemia, and hypertension, which predispose a person to cardiometabolic diseases. Many studies reported the beneficial effects of honey in reversing metabolic syndrome through its antiobesity, hypoglycaemic, hypolipidaemic, and hypotensive actions. This review aims to provide an overview of the mechanism of honey in reversing metabolic syndrome. The therapeutic effects of honey largely depend on the antioxidant and anti-inflammatory properties of its polyphenol and flavonoid contents. Polyphenols, such as caffeic acid, p-coumaric acid, and gallic acid, are some of the phenolic acids known to have antiobesity and antihyperlipidaemic properties. They could inhibit the gene expression of sterol regulatory element-binding transcription factor 1 and its target lipogenic enzyme, fatty acid synthase (FAS). Meanwhile, caffeic acid and quercetin in honey are also known to reduce body weight and fat mass. In addition, fructooligosaccharides in honey are also known to alter lipid metabolism by reducing FAS activity. The fructose and phenolic acids might contribute to the hypoglycaemic properties of honey through the phosphatidylinositol 3-kinase/protein kinase B insulin signalling pathway. Honey can increase the expression of Akt and decrease the expression of nuclear factor-kappa B. Quercetin, a component of honey, can improve vasodilation by enhancing nitric oxide production via endothelial nitric oxide synthase and stimulate calcium-activated potassium channels. In conclusion, honey can be used as a functional food or adjuvant therapy to prevent and manage metabolic syndrome.
Metabolic syndrome (MetS) is composed of central obesity, hyperglycemia, dyslipidemia and hypertension that increase an individual’s tendency to develop type 2 diabetes mellitus and cardiovascular diseases. Kelulut honey (KH) produced by stingless bee species has a rich phenolic profile. Recent studies have demonstrated that KH could suppress components of MetS, but its mechanisms of action are unknown. A total of 18 male Wistar rats were randomly divided into control rats (C group) (n = 6), MetS rats fed with a high carbohydrate high fat (HCHF) diet (HCHF group) (n = 6), and MetS rats fed with HCHF diet and treated with KH (HCHF + KH group) (n = 6). The HCHF + KH group received 1.0 g/kg/day KH via oral gavage from week 9 to 16 after HCHF diet initiation. Compared to the C group, the MetS group experienced a significant increase in body weight, body mass index, systolic (SBP) and diastolic blood pressure (DBP), serum triglyceride (TG) and leptin, as well as the area and perimeter of adipocyte cells at the end of the study. The MetS group also experienced a significant decrease in serum HDL levels versus the C group. KH supplementation reversed the changes in serum TG, HDL, leptin, adiponectin and corticosterone levels, SBP, DBP, as well as adipose tissue 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) level, area and perimeter at the end of the study. In addition, histological observations also showed that KH administration reduced fat deposition within hepatocytes, and prevented deterioration of pancreatic islet and renal glomerulus. In conclusion, KH is effective in preventing MetS by suppressing leptin, corticosterone and 11βHSD1 levels while elevating adiponectin levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.