The appropriate inflow control valve (ICV) design plays an important role for achieving adequate proactive reservoir management, production management and improving oil recovery. The smart completion consisting of custom designed inflow control valves along with downhole gauges are proven to be the great tool for maximizing sweep efficiency in Minagish Field, West Kuwait. The demonstrated benefits include reduction of unwanted water production, equalization of inflow profile, elimination of cross flow across laterals in multilateral wells and optimization of water injection allocation resulted in increasing sustained well productivity and maximizing oil recovery. Further the downhole gauges provides required reservoir surveillance data on real time for effective reservoir and production monitoring. Moreover the real time surveillance and production control capabilities over entire well life enabled ability to take necessary actions at right time for facilitate defensive as well as proactive reservoir management. In addition the intelligent wells are proven to control the distribution of oil, water and gas in a well between different layers, compartments or reservoirs having high degrees of anisotropy and heterogeneity. The smart completions having optimally designed downhole inflow control valves are implemented in oil producers, water injectors, multilateral wells with ESP (Electrical Submersible Pump) and smart dump flood water injectors in Minagish Field. An integrated novel workflow is developed and multi-disciplinary team approach was followed for planning and design of smart completions by considering reservoir properties, geological data, petro-physical data and related uncertainties. Further the various production scenarios, well management scenarios, reservoir dynamics, reservoir uncertainties and reservoir management objectives were considered to select the most appropriate flow trim design of multi-position inflow control valves for wells having multi-zone intelligent completion, smart multilaterals and smart dump flood completions. Also, the right flow control option is included in well design, as it has an impact on the number of zones/intervals that can be realistically controlled in one well, and may affect the overall reliability of the integrated system. Previous field experiences have shown that the resulting benefits are diminished when the front end engineering does not considered suitable inflow control valve design and choke setting tailored to reservoir requirements and inherent uncertainties. The consequences of poor inflow control valve design is realized and found that only few choke positions are usable resulting in non-optimum well performance. Lessons learned from previous wells were incorporated in the new smart wells design and integrated workflow is developed by including the reservoir properties, reservoir dynamic response (e.g. water encroachment and time to breakthrough) and well operating constraints. The paper covers a novel workflow for inflow control valve design and chokes setting stepping distribution that assimilates reservoir properties, wellbore and production constraints. Also the paper details about established reservoir management and production management achieved by properly designed intelligent completions supported with long term well performance results.
Water coning is a serious problem in horizontal wells in Burgan reservoir of Minagish field located in West Kuwait. The reservoir consists of massive channel sands with active bottom aquifer and having very high permeability in the order of few Darcy. The reservoir contains medium quality crude having viscosity of about 30 cp with mobility ratio of 30 to 40. The localized increase in drawdown at sand-face due to high liquid production rate results in early water breakthrough in most of the horizontal wells, even with high stand off from OWC (Oil Water Contact). After water breakthrough the water cut in the wells starts increasing strictly, resulting in by passed oil region below horizontal well. As producing water-oil ratio starts increasing, the operating cost of the well and oil production cost starts rising significantly. In one of the horizontal well of Burgan reservoir, the water cut increased to 90% over a very short period of production and the water cone could not subside even after the well was shut-in for almost three years, confirmed by running the water saturation logs in the subject well as well as in the nearby offset wells. The water saturation logs clearly indicates the oil water interface and the extent of water coning.The paper covers an analytical model developed for horizontal well to predict the critical drawdown, critical production rate, extent of water coning, time for water breakthrough and shut-in time required to subside the cone for very high mobility Burgan reservoir. The predicted results are in agreement with the actual well performance and production logging results.The detailed coning study and model presented in this paper have assisted in planning the advanced completion techniques like Inflow Control Device (ICD) and intelligent multilateral wells with ICD, ICV (Inflow Control Valve) completions to address the severe water coning problems. This allows uniform depletion of reservoir below the horizontal wells for facilitating the steady water-oil interface upward movement below the wellbore. Also the horizontal wells will be placed at optimum distance from the OWC to maximize oil recovery and minimizing the risk of by passed oil. IntroductionThe Minagish field is located in the West Kuwait (figure 1) is a north-south trending anticline with hydrocarbon contained in six major reservoirs ranging in age from early Jurassic to late Cretaceous. The Minagish field contains both sandstone and carbonate reservoirs. The Burgan sandstone reservoir consists of clastic material with minor amounts of carbonatic cements, which appear in the transition zone between continental to marine dominated environments. Generally the sand bodies, silt and shale layers are sedimented randomly within the formation. The general facies trend within the Burgan formation is from a low stand system into high stand system units. The best developed reservoir parts are having higher porosity and ultra high permeability in the order of few Darcy. The reservoir is underlain by an active aquifer causing the bottom w...
Advanced smart multilateral wells with extended reservoir contact from a single well location have accelerated sustained oil production and increases hydrocarbon recovery from ultra-high water mobility oil-wet Burgan reservoir in Minagish Field West Kuwait. Further the smart multilateral wells have proven to be a great tool for adequate proactive reservoir management and production management without well interventions. The Burgan reservoir has active aquifer, very high permeability sands associated with active faults and contain highly viscous reservoir fluid with downhole viscosity of more than 40cp, enhance water mobility and resulted in premature water breakthrough with increasing water cut trend within few months of production in existing horizontal wells. This has resulted into non-uniform reservoir depletion, by-passed oil regions and low oil recovery. The smart level-4 multilateral wells were successfully designed and implemented in Burgan reservoir by combining the reliable Level-4 junction along with stacked dual lateral completion having customized viscosity independent Inflow Control Device (ICD), customized two Inflow-Control Valves as well as down hole gauges, wide operating range Electrical Submersible Pump (ESP), suitable wellheads, X-MAS tree and Integrated surface panel for real time data monitoring first time in Kuwait. The improved production performance of smart multilateral wells in Burgan reservoir of Minagish Field, West Kuwait have achieved appropriate production management through flow regulations across laterals and adequate reservoir management with the combination of inflow control device as well as inflow control valves along with downhole pressure temperature gauges. Moreover the smart multilateral wells have enhanced sustained oil production, maximizes hydrocarbon recovery at lowered capital and operational expenditure resulted in improved economic performance of reservoir with significant increase in net present value (NPV). The paper covers the successful implementation of smart multilateral wells and its effectiveness in achieving the life-cycle production management as well as proactive reservoir management supported with actual well performance results. Further the paper details about the economic benefits of smart multilateral wells and its contribution in improving the economic performance of Burgan reservoir of Minagish Field, West Kuwait.
Increased hydrocarbon recovery and accelerated production from ultra-high water mobility oil-wet reservoir requires the application of advanced well completion technologies to address premature water breakthrough, reservoir management, production management and extended reservoir contact from a single well location. The Burgan Reservoir of Minagish Field, West Kuwait has active aquifer, very high permeability sands associated with active faults and contain highly viscous reservoir fluid with downhole viscosity of 40cp, enhances water mobility and resulted in premature water breakthrough with increasing water cut trend within few months of production as confirmed from well performance of existing horizontal wells. This has resulted in to non-uniform reservoir depletion, by-passed oil regions and low oil recovery.The Kuwait's first smart level-4 multilateral well was completed in Burgan reservoir by combining the Level-4 junction along with stacked dual lateral completion having customized viscosity independent Inflow Control Device (ICD), customized two Inflow-Control Valves as well as down hole gauges, wide operating range Electrical Submersible Pump (ESP), suitable wellheads, X-MAS tree and Integrated surface panel for real time data monitoring. The smart multilateral well has assisted in addressing premature water breakthrough, enhanced dry oil production and facilitated uniform depletion, which results in improved hydrocarbon recovery. The paper covers the customized design of smart Level-4 multilateral well by taking in to account the reservoir and its fluid characterization, well architecture, implementation and specially designed invert emulsion drilling fluid for effective wellbore cleanup to achieve formation virginity. The improved reservoir management and production management results are also mentioned in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.