LaRa (Lander Radioscience) is an experiment on the ExoMars 2020 mission that uses the Doppler shift on the radio link due to the motion of the ExoMars platform tied to the surface of Mars with respect to the Earth ground stations (e.g. the deep space network stations of NASA), in order to precisely measure the relative velocity of the lander on Mars with respect to the Earth. The LaRa measurements shall improve the understanding of the structure and processes in the deep interior of Mars by obtaining the rotation and orientation of Mars with a better precision compared to the previous missions. In this paper, we provide the analysis done until now for the best realization of these objectives. We explain the geophysical observation that will be reached with LaRa (Length-of-day variations, precession, nutation, and possibly polar motion). We develop the experiment set up, which includes the ground stations on Earth (so-called ground segment). We describe the instrument, i.e. the transponder and its three antennas. We further detail the link budget and the expected noise level that will be reached. Finally, we detail the expected results, which encompasses the explanation of how we shall determine Mars' orientation parameters, and the way we shall deduce Mars' interior structure and Mars' atmosphere from them. Lastly, we explain briefly how we will be able to determine the Surface platform position.
This paper provides new designs and realizations of leaky-wave (LW) metasurface (MTS) antennas fed at multiple points. The design technique is based on the direct integral-equation solution by the Method of Moments (MoM). The unknown is no longer the current distribution, but the impedance profile itself. The method can be used to generate any shaped radiation pattern in amplitude, phase, and polarization, provided that the antenna area and the feeder illumination are consistent with the shape of the desired radiation pattern. The algorithm can also be used to design multi-functional antennas (multibeam, multiband, dual-polarizion, etc). While multiple feeds are traditionally used to implement multiple fonctionnalities, they may also be required for the efficient generation of a single shaped beam, thus leading to a higher surface-wave (SW) to LW conversion efficiency. The present paper shows for the first time, two realizations of MTS design with the integral equation formalism, which require the usage of multiple feeds: a circularly polarized sectoral conical beam and a dual-polarized broadside beam MTS antenna. The good comparison between measurements and numerical predictions shows the effectiveness of the design method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.